找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data; Ingrid Hotz,Thomas Schultz Conference proceedings 2015 Spr

[复制链接]
楼主: Daidzein
发表于 2025-3-23 13:39:03 | 显示全部楼层
发表于 2025-3-23 16:46:17 | 显示全部楼层
A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractographyques that employ focus+context visualization, visualizations of fiber tract bundles, representations of uncertainty in the context of probabilistic fiber tracking, and techniques that rely on a spatially abstracted visualization of connectivity.
发表于 2025-3-23 18:01:18 | 显示全部楼层
发表于 2025-3-24 00:28:02 | 显示全部楼层
发表于 2025-3-24 04:01:22 | 显示全部楼层
发表于 2025-3-24 08:49:41 | 显示全部楼层
Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Fuh effects is immensely important for quantitative studies aiming to obtain microstructural parameters using diffusion MR acquisitions. Studies in recent years have demonstrated the potential of sophisticated gradient waveforms to provide novel information inaccessible by traditional measurements. Th
发表于 2025-3-24 13:31:56 | 显示全部楼层
Finslerian Diffusion and the Bloch–Torrey Equation is implicitly used in diffusion tensor imaging of the brain when cast into a Riemannian framework. When modeling the brain white matter as a Riemannian manifold one finds (under some provisions) that the metric tensor is proportional to the inverse of the diffusion tensor, and this opens up a range
发表于 2025-3-24 17:44:34 | 显示全部楼层
Fiber Orientation Distribution Functions and Orientation Tensors for Different Material Symmetriesibution functions (ODF), including the well-known von Mises-Fisher, Watson, and de la Vallée Poussin ODFs. Each is characterized by a mean direction and a concentration parameter. Then, we use these elementary ODFs as building blocks to construct new ones with a specified material symmetry and deriv
发表于 2025-3-24 21:53:49 | 显示全部楼层
Topology of 3D Linear Symmetric Tensor Fieldsrch results to the most fundamental types of 3D tensor fields, i.e., linear tensor fields, and provide some novel insights on such fields. We also propose a number of hypotheses about linear tensor fields. We hope by studying linear tensor fields, we can gain more critical insights into the topology
发表于 2025-3-25 03:14:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 08:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表