书目名称 | Vektorbündel | 副标题 | Vom Möbius-Bündel bi | 编辑 | Karlheinz Knapp | 视频video | | 概述 | Möglichst elementare Darstellung, wichtige Begriffe werden sofort mit Beispielen illustriert und kehren mehrfach in steigender Allgemeinheit zur Vertiefung wieder.Beweise werden sehr ausführlich ausge | 图书封面 |  | 描述 | .Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das Möbiusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte..Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein Möbiusband auf das Vorhandensein eines "Loches" hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch diese Nähe zur Geometrie hat die Vektorbündeltheorie nicht nur zahlreiche Anwendungen, so kann man beispielsweise schon mit geringen Voraussetzungen bis zur Lösung des Divisionsalgebrenproblems vordringen, sondern sie ist auch in vielen Gebieten der Mathematik Teil der grundlegenden Sprache. Der Text beginnt mit einer ausführlichen nur auf geringe Voraussetzungen aufbauenden Darstellung der Grundlagen. Er führt dann über das als zentrales Thema behandelte Schnittproblem bis zu einer Herleitung und Hintergrunddiskussion des Vektorfeldsatzes und des entsprechenden Satzes für stabile Bündel über Sphären. Er ist gedacht für alle, die die abstrakten Ideen und Techniken der algebraischen Topologie an ganz konkreten Situationen erproben, erlernen | 出版日期 | Textbook 2013 | 关键词 | Algebraische Topologie; Homotopietheorie; K-Theorie; charakteristische Klassen | 版次 | 1 | doi | https://doi.org/10.1007/978-3-658-03114-5 | isbn_softcover | 978-3-658-03113-8 | isbn_ebook | 978-3-658-03114-5 | copyright | Springer Fachmedien Wiesbaden 2013 |
The information of publication is updating
|
|