找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Using Historical Maps in Scientific Studies; Applications, Challe Yao-Yi Chiang,Weiwei Duan,Craig A. Knoblock Book 2020 The Author(s), unde

[复制链接]
查看: 37431|回复: 35
发表于 2025-3-21 19:46:42 | 显示全部楼层 |阅读模式
书目名称Using Historical Maps in Scientific Studies
副标题Applications, Challe
编辑Yao-Yi Chiang,Weiwei Duan,Craig A. Knoblock
视频video
丛书名称SpringerBriefs in Geography
图书封面Titlebook: Using Historical Maps in Scientific Studies; Applications, Challe Yao-Yi Chiang,Weiwei Duan,Craig A. Knoblock Book 2020 The Author(s), unde
描述This book illustrates the first connection between the map user community and the developers of digital map processing technologies by providing several applications, challenges, and best practices in working with historical maps. After the introduction chapter, in this book, Chapter 2 presents a variety of existing applications of historical maps to demonstrate varying needs for processing historical maps in scientific studies (e.g., thousands of historical maps from a map series vs. a few historical maps from various publishers and with different cartographic styles). Chapter 2 also describes case studies introducing typical types of semi-automatic and automatic digital map processing technologies. .The case studies showcase the strengths and weaknesses of semi-automatic and automatic approaches by testing them in a symbol recognition task on the same scanned map. Chapter 3 presents the technical challenges and trends in building a map processing, modeling, linking, and publishing framework. The framework will enable querying historical map collections as a unified and structured spatiotemporal source in which individual geographic phenomena (extracted from maps) are modeled (des
出版日期Book 2020
关键词Extracting data; Historical maps; Modeling; Map modeling; Map applications; Digital map processing; Docume
版次1
doihttps://doi.org/10.1007/978-3-319-66908-3
isbn_softcover978-3-319-66907-6
isbn_ebook978-3-319-66908-3Series ISSN 2211-4165 Series E-ISSN 2211-4173
issn_series 2211-4165
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2020
The information of publication is updating

书目名称Using Historical Maps in Scientific Studies影响因子(影响力)




书目名称Using Historical Maps in Scientific Studies影响因子(影响力)学科排名




书目名称Using Historical Maps in Scientific Studies网络公开度




书目名称Using Historical Maps in Scientific Studies网络公开度学科排名




书目名称Using Historical Maps in Scientific Studies被引频次




书目名称Using Historical Maps in Scientific Studies被引频次学科排名




书目名称Using Historical Maps in Scientific Studies年度引用




书目名称Using Historical Maps in Scientific Studies年度引用学科排名




书目名称Using Historical Maps in Scientific Studies读者反馈




书目名称Using Historical Maps in Scientific Studies读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:49:41 | 显示全部楼层
Yao-Yi Chiang,Weiwei Duan,Stefan Leyk,Johannes H. Uhl,Craig A. Knoblocks is expected to continue. Projections of potential future climates show that the region will probably become considerably warmer and wetter in some parts, but dryer in others. Terrestrial and aquatic ecosystems have already shown adjustments to increased temperatures and are expected to undergo fur
发表于 2025-3-22 03:35:26 | 显示全部楼层
发表于 2025-3-22 06:59:21 | 显示全部楼层
Yao-Yi Chiang,Weiwei Duan,Stefan Leyk,Johannes H. Uhl,Craig A. Knoblock
发表于 2025-3-22 11:05:39 | 显示全部楼层
发表于 2025-3-22 14:02:26 | 显示全部楼层
Yao-Yi Chiang,Weiwei Duan,Stefan Leyk,Johannes H. Uhl,Craig A. Knoblock
发表于 2025-3-22 17:30:47 | 显示全部楼层
Historical Map Applications and Processing Technologies,promising. In many cases, existing digital map processing technologies could help facilitate the digitization process, and it just requires additional knowledge to select an appropriate technology given the problem scope (e.g., the number of maps for processing, map conditions, and style varieties).
发表于 2025-3-22 23:44:30 | 显示全部楼层
发表于 2025-3-23 01:37:06 | 显示全部楼层
Training Deep Learning Models for Geographic Feature Recognition from Historical Maps,e been progressing rapidly with the emergence of Deep Convolutional Neural Networks (DCNNs or CNNs). A key factor for the success of CNNs is the wide availability of large amounts of (labeled) training data, but these training data are mostly for daily images not for historical (or any) maps. Today,
发表于 2025-3-23 08:06:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 08:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表