找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Unsupervised Domain Adaptation; Recent Advances and Jingjing Li,Lei Zhu,Zhekai Du Book 2024 The Editor(s) (if applicable) and The Author(s

[复制链接]
楼主: Menthol
发表于 2025-3-23 10:15:52 | 显示全部楼层
发表于 2025-3-23 16:05:59 | 显示全部楼层
Book 2024based UDA, which creatively leverages adversarial learning by conducting a minimax game between the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents act
发表于 2025-3-23 18:08:44 | 显示全部楼层
发表于 2025-3-24 02:05:24 | 显示全部楼层
发表于 2025-3-24 03:29:59 | 显示全部楼层
发表于 2025-3-24 09:17:11 | 显示全部楼层
发表于 2025-3-24 12:11:23 | 显示全部楼层
发表于 2025-3-24 16:21:02 | 显示全部楼层
发表于 2025-3-24 19:36:15 | 显示全部楼层
Active Learning for Unsupervised Domain Adaptation,roduces two novel techniques to address key limitations of existing active domain adaptation (ADA) methods: estimating target representativeness without source data access and probabilistic uncertainty estimation. First, an energy-based criterion is proposed for selecting representative target sampl
发表于 2025-3-25 03:13:12 | 显示全部楼层
Continual Test-Time Unsupervised Domain Adaptation,main data during inference with a continuously changing data distribution. Previous methods have been found to lack noise robustness, leading to a significant increase in errors under strong noise. In this chapter, we address the noise robustness problem in continual TTA by offering three effective
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 20:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表