用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Unsupervised Domain Adaptation; Recent Advances and Jingjing Li,Lei Zhu,Zhekai Du Book 2024 The Editor(s) (if applicable) and The Author(s

[复制链接]
查看: 37816|回复: 42
发表于 2025-3-21 16:17:34 | 显示全部楼层 |阅读模式
书目名称Unsupervised Domain Adaptation
副标题Recent Advances and
编辑Jingjing Li,Lei Zhu,Zhekai Du
视频video
概述Covers not only conventional domain adaptation, but also source-free domain adaptation and active domain adaptation.Presents unique methods to approach domain adaptation from novel perspectives, which
丛书名称Machine Learning: Foundations, Methodologies, and Applications
图书封面Titlebook: Unsupervised Domain Adaptation; Recent Advances and  Jingjing Li,Lei Zhu,Zhekai Du Book 2024 The Editor(s) (if applicable) and The Author(s
描述.Unsupervised domain adaptation (UDA) is a challenging problem in machine learning where the model is trained on a source domain with labeled data and tested on a target domain with unlabeled data. In recent years, UDA has received significant attention from the research community due to its applicability in various real-world scenarios. This book provides a comprehensive review of state-of-the-art UDA methods and explores new variants of UDA that have the potential to advance the field...The book begins with a clear introduction to the UDA problem and is mainly organized into four technical sections, each focused on a specific piece of UDA research. The first section covers criterion optimization-based UDA, which aims to learn domain-invariant representations by minimizing the discrepancy between source and target domains. The second section discusses bi-classifier adversarial learning-based UDA, which creatively leverages adversarial learning by conducting a minimax game between the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents act
出版日期Book 2024
关键词Transfer Learning; Adversarial Learning; Source-Free Domain adaptation; Active Domain Adaptation; Unsupe
版次1
doihttps://doi.org/10.1007/978-981-97-1025-6
isbn_softcover978-981-97-1027-0
isbn_ebook978-981-97-1025-6Series ISSN 2730-9908 Series E-ISSN 2730-9916
issn_series 2730-9908
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Unsupervised Domain Adaptation影响因子(影响力)




书目名称Unsupervised Domain Adaptation影响因子(影响力)学科排名




书目名称Unsupervised Domain Adaptation网络公开度




书目名称Unsupervised Domain Adaptation网络公开度学科排名




书目名称Unsupervised Domain Adaptation被引频次




书目名称Unsupervised Domain Adaptation被引频次学科排名




书目名称Unsupervised Domain Adaptation年度引用




书目名称Unsupervised Domain Adaptation年度引用学科排名




书目名称Unsupervised Domain Adaptation读者反馈




书目名称Unsupervised Domain Adaptation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:24:07 | 显示全部楼层
发表于 2025-3-22 03:13:04 | 显示全部楼层
Machine Learning: Foundations, Methodologies, and Applicationshttp://image.papertrans.cn/u/image/942522.jpg
发表于 2025-3-22 06:02:16 | 显示全部楼层
https://doi.org/10.1007/978-981-97-1025-6Transfer Learning; Adversarial Learning; Source-Free Domain adaptation; Active Domain Adaptation; Unsupe
发表于 2025-3-22 11:58:33 | 显示全部楼层
发表于 2025-3-22 13:48:05 | 显示全部楼层
Jingjing Li,Lei Zhu,Zhekai DuCovers not only conventional domain adaptation, but also source-free domain adaptation and active domain adaptation.Presents unique methods to approach domain adaptation from novel perspectives, which
发表于 2025-3-22 18:49:20 | 显示全部楼层
发表于 2025-3-22 22:25:16 | 显示全部楼层
2730-9908 tween the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents act978-981-97-1027-0978-981-97-1025-6Series ISSN 2730-9908 Series E-ISSN 2730-9916
发表于 2025-3-23 02:53:32 | 显示全部楼层
Bi-Classifier Adversarial Learning-Based Unsupervised Domain Adaptation,er focuses on preserving target decision boundaries. Experiments on several domain adaptation benchmarks demonstrate the efficacy of both CGDM and uneven bi-classifier learning in boosting adaptation performance.
发表于 2025-3-23 07:50:25 | 显示全部楼层
Source-Free Unsupervised Domain Adaptation,ameter sharing further reduces the number of learnable parameters for efficient adaptation. Model perturbation avoids distorting weights like fine-tuning and is more flexible than only updating batch normalization statistics. Experiments demonstrate the effectiveness of both data and model perturbat
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 18:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表