找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Two-dimensional Self-independent Variable Cubic Nonlinear Systems; Albert C. J. Luo Book 2024 The Editor(s) (if applicable) and The Author

[复制链接]
查看: 21559|回复: 35
发表于 2025-3-21 16:12:36 | 显示全部楼层 |阅读模式
书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems
编辑Albert C. J. Luo
视频video
概述​Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems.Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-s
图书封面Titlebook: Two-dimensional Self-independent Variable Cubic Nonlinear Systems;  Albert C. J. Luo Book 2024 The Editor(s) (if applicable) and The Author
描述.This book, the third of 15 related monographs, presents systematically a theory of self-independent cubic nonlinear systems. Here, at least one vector field is self-cubic, and the other vector field can be constant, self-linear, self-quadratic, or self-cubic. For constant vector fields in this book, the dynamical systems possess 1-dimensional flows, such as source, sink and saddle flows, plus third-order source and sink flows.  For self-linear and self-cubic systems discussed,  the dynamical systems possess source, sink and saddle equilibriums, saddle-source and saddle-sink, third-order sink and source (i.e, (3rd SI:SI)-sink and (3rdSO:SO)-source) and third-order source (i.e., (3rd SO:SI)-saddle, (3rd SI, SO)-saddle) . For self-quadratic and self-cubic systems, in addition to the first and third-order sink, source and saddles plus saddle-source and saddle-sink, there are (3:2)-saddle-sink and (3:2) saddle-source and double-saddles. For the two self-cubic systems, (3:3)-source, sink and saddles exist. Finally, the author describes that homoclinic orbits without centers can be formed, and the corresponding homoclinic networks of source, sink and saddles exists.   ..Readers will lear
出版日期Book 2024
关键词Constant and crossing-cubic systems; Self-linear and crossing-cubic systems; Self-quadratic and crossi
版次1
doihttps://doi.org/10.1007/978-3-031-57112-1
isbn_softcover978-3-031-57114-5
isbn_ebook978-3-031-57112-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems影响因子(影响力)




书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems影响因子(影响力)学科排名




书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems网络公开度




书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems网络公开度学科排名




书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems被引频次




书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems被引频次学科排名




书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems年度引用




书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems年度引用学科排名




书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems读者反馈




书目名称Two-dimensional Self-independent Variable Cubic Nonlinear Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:05:42 | 显示全部楼层
第131346主题贴--第2楼 (沙发)
发表于 2025-3-22 04:28:55 | 显示全部楼层
板凳
发表于 2025-3-22 06:31:58 | 显示全部楼层
第4楼
发表于 2025-3-22 09:51:46 | 显示全部楼层
5楼
发表于 2025-3-22 16:45:41 | 显示全部楼层
6楼
发表于 2025-3-22 18:02:31 | 显示全部楼层
7楼
发表于 2025-3-22 23:16:06 | 显示全部楼层
8楼
发表于 2025-3-23 02:14:07 | 显示全部楼层
9楼
发表于 2025-3-23 07:01:26 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 08:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表