找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Transfer in Reinforcement Learning Domains; Matthew E. Taylor Book 2009 Springer-Verlag Berlin Heidelberg 2009 Computational Intelligence.

[复制链接]
查看: 43662|回复: 35
发表于 2025-3-21 16:52:13 | 显示全部楼层 |阅读模式
书目名称Transfer in Reinforcement Learning Domains
编辑Matthew E. Taylor
视频video
概述Introductory book to the new concept of transfer learning.Recent research in transfer learning which is a current important topic in the field of Computational Intelligence
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Transfer in Reinforcement Learning Domains;  Matthew E. Taylor Book 2009 Springer-Verlag Berlin Heidelberg 2009 Computational Intelligence.
描述.In reinforcement learning (RL) problems, learning agents sequentially execute actions with the goal of maximizing a reward signal. The RL framework has gained popularity with the development of algorithms capable of mastering increasingly complex problems, but learning difficult tasks is often slow or infeasible when RL agents begin with no prior knowledge. The key insight behind "transfer learning" is that generalization may occur not only within tasks, but also across tasks. While transfer has been studied in the psychological literature for many years, the RL community has only recently begun to investigate the benefits of transferring knowledge. This book provides an introduction to the RL transfer problem and discusses methods which demonstrate the promise of this exciting area of research...The key contributions of this book are:.....Definition of the transfer problem in RL domains ..Background on RL, sufficient to allow a wide audience to understand discussed transfer concepts ..Taxonomy for transfer methods in RL ..Survey of existing approaches ..In-depth presentation of selected transfer methods ..Discussion of key open questions..By way of the research presented in this
出版日期Book 2009
关键词Computational Intelligence; Data Mining; Distributed Environments; Information Retrieval; Signal; agents;
版次1
doihttps://doi.org/10.1007/978-3-642-01882-4
isbn_softcover978-3-642-10186-1
isbn_ebook978-3-642-01882-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

书目名称Transfer in Reinforcement Learning Domains影响因子(影响力)




书目名称Transfer in Reinforcement Learning Domains影响因子(影响力)学科排名




书目名称Transfer in Reinforcement Learning Domains网络公开度




书目名称Transfer in Reinforcement Learning Domains网络公开度学科排名




书目名称Transfer in Reinforcement Learning Domains被引频次




书目名称Transfer in Reinforcement Learning Domains被引频次学科排名




书目名称Transfer in Reinforcement Learning Domains年度引用




书目名称Transfer in Reinforcement Learning Domains年度引用学科排名




书目名称Transfer in Reinforcement Learning Domains读者反馈




书目名称Transfer in Reinforcement Learning Domains读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:33:18 | 显示全部楼层
第128206主题贴--第2楼 (沙发)
发表于 2025-3-22 01:14:25 | 显示全部楼层
板凳
发表于 2025-3-22 07:57:52 | 显示全部楼层
第4楼
发表于 2025-3-22 10:08:02 | 显示全部楼层
5楼
发表于 2025-3-22 16:03:23 | 显示全部楼层
6楼
发表于 2025-3-22 19:46:45 | 显示全部楼层
7楼
发表于 2025-3-23 00:11:06 | 显示全部楼层
8楼
发表于 2025-3-23 04:58:55 | 显示全部楼层
9楼
发表于 2025-3-23 08:05:36 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 05:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表