找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Topological Structure ofthe Solution Set for Evolution Inclusions; Yong Zhou,Rong-Nian Wang,Li Peng Book 2017 Springer Nature Singapore Pt

[复制链接]
楼主: Conformist
发表于 2025-3-23 12:15:40 | 显示全部楼层
Topological Structure ofthe Solution Set for Evolution Inclusions978-981-10-6656-6Series ISSN 1389-2177 Series E-ISSN 2197-795X
发表于 2025-3-23 16:19:17 | 显示全部楼层
Developments in Mathematicshttp://image.papertrans.cn/u/image/926430.jpg
发表于 2025-3-23 20:04:31 | 显示全部楼层
https://doi.org/10.1007/978-981-10-6656-6Topological structure; Attractability for nonlinear evolution inclusions; m-dissipative operators; Cont
发表于 2025-3-24 00:32:20 | 显示全部楼层
发表于 2025-3-24 05:53:19 | 显示全部楼层
Yong Zhou,Rong-Nian Wang,Li PengSystematically presents topological theory and dynamics for evolution inclusions, together with relevant applications.Covers evolution inclusions with m-dissipative operators, with the Hille-Yosida op
发表于 2025-3-24 06:42:01 | 显示全部楼层
发表于 2025-3-24 11:28:18 | 显示全部楼层
发表于 2025-3-24 18:38:59 | 显示全部楼层
Quasi-autonomous Evolution Inclusions,ons including limit and weak solutions. Under appropriate assumptions, we show that the set of the limit solutions is a compact.-set. When the right-hand side satisfies the one-sided Perron condition, a variant of the well-known lemma of Filippov-Pliś, as well as a relaxation theorem, are proved. Se
发表于 2025-3-24 19:28:21 | 显示全部楼层
发表于 2025-3-25 01:22:01 | 显示全部楼层
Neutral Functional Evolution Inclusions,ogical properties of the solution set is investigated. It is shown that the solution set is nonempty, compact and an .-set which means that the solution set may not be a singleton but, from the point of view of algebraic topology, it is equivalent to a point, in the sense that it has the same homolo
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 12:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表