找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Relevance of the Time Domain to Neural Network Models; A. Ravishankar Rao,Guillermo A. Cecchi Book 2012 Springer Science+Business Medi

[复制链接]
查看: 40853|回复: 35
发表于 2025-3-21 16:22:27 | 显示全部楼层 |阅读模式
书目名称The Relevance of the Time Domain to Neural Network Models
编辑A. Ravishankar Rao,Guillermo A. Cecchi
视频video
概述The book concentrates on a crucial aspect of brain modeling: the nature and functional relevance of temporal interactions in neural systems.Develops a unified view of how the time domain can be effect
丛书名称Springer Series in Cognitive and Neural Systems
图书封面Titlebook: The Relevance of the Time Domain to Neural Network Models;  A. Ravishankar Rao,Guillermo A. Cecchi Book 2012 Springer Science+Business Medi
描述.A significant amount of effort in neural modeling is directed towards understanding the representation of information in various parts of the brain, such as cortical maps [6], and the paths along which sensory information is processed. Though the time domain is integral an integral aspect of the functioning of biological systems, it has proven very challenging to incorporate the time domain effectively in neural network models. A promising path that is being explored is to study the importance of synchronization in biological systems. Synchronization plays a critical role in the interactions between neurons in the brain, giving rise to perceptual phenomena, and explaining multiple effects such as visual contour integration, and the separation of superposed inputs...The purpose of this book is to provide a unified view of how the time domain can be effectively employed in neural network models. A first direction to consider is to deploy oscillators that model temporal firing patterns of a neuron or a group of neurons. There is a growing body of research on the use of oscillatory neural networks, and their ability to synchronize under the right conditions. Such networks of synchroni
出版日期Book 2012
版次1
doihttps://doi.org/10.1007/978-1-4614-0724-9
isbn_softcover978-1-4614-2992-0
isbn_ebook978-1-4614-0724-9Series ISSN 2363-9105 Series E-ISSN 2363-9113
issn_series 2363-9105
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

书目名称The Relevance of the Time Domain to Neural Network Models影响因子(影响力)




书目名称The Relevance of the Time Domain to Neural Network Models影响因子(影响力)学科排名




书目名称The Relevance of the Time Domain to Neural Network Models网络公开度




书目名称The Relevance of the Time Domain to Neural Network Models网络公开度学科排名




书目名称The Relevance of the Time Domain to Neural Network Models被引频次




书目名称The Relevance of the Time Domain to Neural Network Models被引频次学科排名




书目名称The Relevance of the Time Domain to Neural Network Models年度引用




书目名称The Relevance of the Time Domain to Neural Network Models年度引用学科排名




书目名称The Relevance of the Time Domain to Neural Network Models读者反馈




书目名称The Relevance of the Time Domain to Neural Network Models读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:25:11 | 显示全部楼层
Book 2012such as cortical maps [6], and the paths along which sensory information is processed. Though the time domain is integral an integral aspect of the functioning of biological systems, it has proven very challenging to incorporate the time domain effectively in neural network models. A promising path
发表于 2025-3-22 03:32:33 | 显示全部楼层
发表于 2025-3-22 05:12:36 | 显示全部楼层
发表于 2025-3-22 11:07:47 | 显示全部楼层
The Relevance of the Time Domain to Neural Network Models
发表于 2025-3-22 14:37:34 | 显示全部楼层
发表于 2025-3-22 19:50:36 | 显示全部楼层
发表于 2025-3-23 00:51:36 | 显示全部楼层
978-1-4614-2992-0Springer Science+Business Media, LLC 2012
发表于 2025-3-23 04:48:40 | 显示全部楼层
The Relevance of the Time Domain to Neural Network Models978-1-4614-0724-9Series ISSN 2363-9105 Series E-ISSN 2363-9113
发表于 2025-3-23 08:18:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 17:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表