找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Hardy Space of a Slit Domain; Alexandru Aleman,William T. Ross,Nathan S. Feldman Book 2009Latest edition Birkh�user Basel 2009 Hardy S

[复制链接]
查看: 50404|回复: 35
发表于 2025-3-21 16:46:55 | 显示全部楼层 |阅读模式
书目名称The Hardy Space of a Slit Domain
编辑Alexandru Aleman,William T. Ross,Nathan S. Feldman
视频video
概述Only book which covers Hardy spaces of slit domains.Includes supplementary material:
丛书名称Frontiers in Mathematics
图书封面Titlebook: The Hardy Space of a Slit Domain;  Alexandru Aleman,William T. Ross,Nathan S. Feldman Book 2009Latest edition Birkh�user Basel 2009 Hardy S
描述If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .
出版日期Book 2009Latest edition
关键词Hardy Space; Invariant; Invariant subspace; Multiplication; Slit plane; character; essential spectrum; func
版次1
doihttps://doi.org/10.1007/978-3-0346-0098-9
isbn_softcover978-3-0346-0097-2
isbn_ebook978-3-0346-0098-9Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightBirkh�user Basel 2009
The information of publication is updating

书目名称The Hardy Space of a Slit Domain影响因子(影响力)




书目名称The Hardy Space of a Slit Domain影响因子(影响力)学科排名




书目名称The Hardy Space of a Slit Domain网络公开度




书目名称The Hardy Space of a Slit Domain网络公开度学科排名




书目名称The Hardy Space of a Slit Domain被引频次




书目名称The Hardy Space of a Slit Domain被引频次学科排名




书目名称The Hardy Space of a Slit Domain年度引用




书目名称The Hardy Space of a Slit Domain年度引用学科排名




书目名称The Hardy Space of a Slit Domain读者反馈




书目名称The Hardy Space of a Slit Domain读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:10:26 | 显示全部楼层
发表于 2025-3-22 02:40:19 | 显示全部楼层
发表于 2025-3-22 05:09:48 | 显示全部楼层
发表于 2025-3-22 11:42:55 | 显示全部楼层
发表于 2025-3-22 14:54:49 | 显示全部楼层
发表于 2025-3-22 17:44:36 | 显示全部楼层
Alexandru Aleman,William T. Ross,Nathan S. FeldmanOnly book which covers Hardy spaces of slit domains.Includes supplementary material:
发表于 2025-3-22 23:13:28 | 显示全部楼层
Book 2009Latest edition ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space
发表于 2025-3-23 04:06:40 | 显示全部楼层
1660-8046 near operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operato
发表于 2025-3-23 07:43:03 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 23:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表