找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Super-Resolution for Remote Sensing; Michal Kawulok,Jolanta Kawulok,M. Emre Celebi Book 2024 The Editor(s) (if applicable) and The Author(

[复制链接]
查看: 22857|回复: 43
发表于 2025-3-21 17:15:32 | 显示全部楼层 |阅读模式
书目名称Super-Resolution for Remote Sensing
编辑Michal Kawulok,Jolanta Kawulok,M. Emre Celebi
视频videohttp://file.papertrans.cn/886/885287/885287.mp4
概述Focuses on reconstruction accuracy compared with ground truth rather than on generating a visually-attractive outcome.Explains how to apply super-resolution to a variety of image modalities inherent t
丛书名称Unsupervised and Semi-Supervised Learning
图书封面Titlebook: Super-Resolution for Remote Sensing;  Michal Kawulok,Jolanta Kawulok,M. Emre Celebi Book 2024 The Editor(s) (if applicable) and The Author(
描述.This book provides a comprehensive perspective over the landscape of super-resolution techniques developed for and applied to remotely-sensed images. The chapters tackle the most important problems that professionals face when dealing with super-resolution in the context of remote sensing. These are: evaluation procedures to assess the super-resolution quality; benchmark datasets (simulated and real-life); super-resolution for specific data modalities (e.g., panchromatic, multispectral, and hyperspectral images); single-image super-resolution, including generative adversarial networks; multi-image fusion (temporal and/or spectral); real-world super-resolution; and task-driven super-resolution. The book presents the results of several recent surveys on super-resolution specifically for the remote sensing community..
出版日期Book 2024
关键词hyperspectral imaging; remote sensing; satellite imagery; Super resolution; deep learning; multispectral
版次1
doihttps://doi.org/10.1007/978-3-031-68106-6
isbn_softcover978-3-031-68108-0
isbn_ebook978-3-031-68106-6Series ISSN 2522-848X Series E-ISSN 2522-8498
issn_series 2522-848X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Super-Resolution for Remote Sensing影响因子(影响力)




书目名称Super-Resolution for Remote Sensing影响因子(影响力)学科排名




书目名称Super-Resolution for Remote Sensing网络公开度




书目名称Super-Resolution for Remote Sensing网络公开度学科排名




书目名称Super-Resolution for Remote Sensing被引频次




书目名称Super-Resolution for Remote Sensing被引频次学科排名




书目名称Super-Resolution for Remote Sensing年度引用




书目名称Super-Resolution for Remote Sensing年度引用学科排名




书目名称Super-Resolution for Remote Sensing读者反馈




书目名称Super-Resolution for Remote Sensing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:00:26 | 显示全部楼层
发表于 2025-3-22 04:21:11 | 显示全部楼层
发表于 2025-3-22 04:47:52 | 显示全部楼层
发表于 2025-3-22 09:27:07 | 显示全部楼层
Introduction to Super-Resolution for Remotely Sensed Hyperspectral Images,ty of current state-of-the-art techniques rely on deep neural networks. While many of these are tailored for grayscale or natural color images, only a fraction are specifically designed for hyperspectral images, such as those captured by satellites. This chapter provides an overview of super-resolut
发表于 2025-3-22 13:31:05 | 显示全部楼层
Real-World Unsupervised Remote Sensing Image Super-Resolution: Addressing Challenges, Solution, andfor high-resolution imagery in real-world scenarios has motivated the advancement of super-resolution techniques that enhance the spatial information of remote-sensing images. Super-resolution aims to recover finer details and textures that are not readily differentiable in the original low-resoluti
发表于 2025-3-22 20:18:37 | 显示全部楼层
发表于 2025-3-22 22:12:37 | 显示全部楼层
Multi-Image Super-Resolution Using Graph Neural Networks,-of-the-art techniques. It introduces foundational concepts of super-resolution reconstruction (SRR), with a focus on the distinctions between single-image super-resolution (SISR) and MISR, and reviews key models in the field. Theoretical underpinnings of graph theory relevant to SRR are explored, a
发表于 2025-3-23 03:36:20 | 显示全部楼层
Effectiveness Analysis of Example-Based Machine Learning and Deep Learning Methods for Super-resolupatial resolution attributed to imaging hardware constraints has led to the development of methods aimed at increasing the spatial resolution of hyperspectral images. Although pan-sharpening and sparse representation techniques based on dictionary learning are effective approaches for this purpose,
发表于 2025-3-23 09:20:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-4 01:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表