找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Semi-supervised Tooth Segmentation; First MICCAI Challen Yaqi Wang,Xiaodiao Chen,Hongyuan Zhang Conference proceedings 2025 The Editor(s) (

[复制链接]
楼主: aggression
发表于 2025-3-26 23:22:55 | 显示全部楼层
发表于 2025-3-27 01:19:10 | 显示全部楼层
,MsNet: Multi-stage Learning from Seldom Labeled Data for 3D Tooth Segmentation in Dental Cone Beam ysis. However, due to variations in dental anatomy, different imaging protocols, and limitations in accessing public datasets, developing an automated algorithm for dental analysis is challenging. This paper introduces a multi-stage learning-based method, named MsNet, utilizing a small amount of lab
发表于 2025-3-27 05:18:05 | 显示全部楼层
发表于 2025-3-27 10:55:18 | 显示全部楼层
发表于 2025-3-27 14:25:29 | 显示全部楼层
发表于 2025-3-27 18:43:53 | 显示全部楼层
,Self-training Based Semi-Supervised Learning and U-Net with Denoiser for Teeth Segmentation in X-Rasignificance to effectively use the unlabeled images to improve the segmentation performance. In order to make full use of unlabeled data, in this paper, we design a three-stage pseudo-label training framework based on self-training to improve the pseudo-label quality in a progressive way. Hard data
发表于 2025-3-27 23:36:35 | 显示全部楼层
,UX-CNet: Effective Edge Information Acquisition for Teeth Image Segmentation,and difficulty in accurately segmenting the detailed information of the edges of the teeth. In this paper, we design a deep learning algorithm named . that can effectively segment teeth and solve the problem of poor effect of teeth edge segmentation. In the experiment, data augmentation was performe
发表于 2025-3-28 04:09:28 | 显示全部楼层
,2D Teeth Segmentation Base on Half-Image Approach and VCMix-Net+, and education. However, the annotations made by radiologists may be subjective, and manual annotation requires a considerable amount of time and labor costs. In this paper, we propose deep-learning model VCMix-Net+ to achieve high-quality segmentation of 2D teeth images. Our VCMix-Net+ performs par
发表于 2025-3-28 08:56:50 | 显示全部楼层
发表于 2025-3-28 11:40:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 19:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表