找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Semi-supervised Tooth Segmentation; First MICCAI Challen Yaqi Wang,Xiaodiao Chen,Hongyuan Zhang Conference proceedings 2025 The Editor(s) (

[复制链接]
楼主: aggression
发表于 2025-3-25 06:16:16 | 显示全部楼层
发表于 2025-3-25 07:55:50 | 显示全部楼层
发表于 2025-3-25 15:01:46 | 显示全部楼层
,High-Precision Semi-supervised 3D Dental Segmentation Based on nnUNet,STS 2023 Challenge: STS-3D CBCT-based tooth segmentation task, our method achieved a Dice similarity coefficient of 0.9111 and 0.7261, an IoU of 0.9164 and 0.7855, and a 3D Hausdorff distance of 0.0453 and 0.2595 on the preliminary and rematch test data set.
发表于 2025-3-25 16:01:29 | 显示全部楼层
发表于 2025-3-25 20:37:54 | 显示全部楼层
Conference proceedings 2025 64 submissions. The papers were written by participants in the STS challenge to describe their solutions for automatic teeth segmentation using the offcial training dataset released for this purpose...In general, this challenge aims to promote the development of the teeth segmentation in panoramic X-ray images and dental CBCT scans..
发表于 2025-3-26 03:22:20 | 显示全部楼层
,Convolutional Neural Network-Based Multi-scale Semantic Segmentation for Two-Dimensional Panoramic diographs. To enhance the model’s performance, we adopt a data augmentation strategy based on the combination of Mosaic and multi-scale image scaling, which significantly enriches the training set samples. Additionally, we propose a post-processing strategy based on the model’s prediction probabilit
发表于 2025-3-26 04:42:33 | 显示全部楼层
,TB-FPN: Enhancing Tooth Segmentation with Cascade Boundary-Aware FPN,urrence of misclassification and missed diagnoses, and improves the efficiency of medical work. To achieve this, we propose a Tooth Boundary-aware Feature Pyramid Network (TB-FPN), a semi-supervised deep learning method applied to tooth image segmentation. This method aims to significantly improve t
发表于 2025-3-26 10:36:30 | 显示全部楼层
发表于 2025-3-26 14:20:20 | 显示全部楼层
发表于 2025-3-26 16:55:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 22:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表