找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Symplectic Geometry of Integrable Hamiltonian Systems; Michèle Audin,Ana Cannas Silva,Eugene Lerman Textbook 2003 Springer Basel AG 2003 D

[复制链接]
楼主: AMASS
发表于 2025-3-26 21:29:02 | 显示全部楼层
Lagrangian and special Lagrangian immersions in Cnth a non degenerate alternated bilinear form (§I.1) and use this “symplectic structure” to define Lagrangian subspaces and immersions (§§I.2, I.3 and I.4). Later, I use the complex structure as well, to define.Lagrangian immersions (§I.5)
发表于 2025-3-27 04:38:22 | 显示全部楼层
Lagrangian and special Lagrangian submanifolds in Symplectic and Calabi-Yau manifoldsold has a neighbourhood which is diffeomorphic to a neighbourhood of the zero section in its cotangent bundle. To be precise and explicit, we need to define a symplectic structure on the cotangent bundles and more generally to say what a symplectic structure on a manifold is
发表于 2025-3-27 05:30:54 | 显示全部楼层
Proof of Theorem I.38t manifold . is 3-dimensional and dim . > 3. If dim. = 3 we will argue directly using slices that the orbit space.is homeomorphic to a closed interval [0, 1] and then use this to compute the integral cohomology of.. This will show that . cannot be homeomorphic to
发表于 2025-3-27 10:20:40 | 显示全部楼层
发表于 2025-3-27 13:54:14 | 显示全部楼层
Textbook 2003ngian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book)..
发表于 2025-3-27 21:14:36 | 显示全部楼层
Introductioney and Lawson [18]. They have become very fashionable recently, after the work of McLean [25], leading to the beautiful speculations of Strominger, Yau and Zaslow [32] and the remarkable papers of Hitchin [19, 20] and Donaldson [11]
发表于 2025-3-27 22:30:10 | 显示全部楼层
Lagrangian and special Lagrangian immersions in Cnth a non degenerate alternated bilinear form (§I.1) and use this “symplectic structure” to define Lagrangian subspaces and immersions (§§I.2, I.3 and I.4). Later, I use the complex structure as well, to define.Lagrangian immersions (§I.5)
发表于 2025-3-28 03:28:16 | 显示全部楼层
Lagrangian and special Lagrangian submanifolds in Symplectic and Calabi-Yau manifoldsold has a neighbourhood which is diffeomorphic to a neighbourhood of the zero section in its cotangent bundle. To be precise and explicit, we need to define a symplectic structure on the cotangent bundles and more generally to say what a symplectic structure on a manifold is
发表于 2025-3-28 09:04:39 | 显示全部楼层
发表于 2025-3-28 10:39:26 | 显示全部楼层
Symplectic ViewpointIn order to define symplectic toric manifolds, we begin by introducing the basic objects in symplectic/hamiltonian geometry/mechanics which lead to their consideration. Our discussion centers around moment maps
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-29 05:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表