找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Sustainable Development in Changing Complex Earth Systems; Attila Kerényi,Richard William McIntosh Book 2020 Springer Nature Switzerland A

[复制链接]
楼主: Levelheaded
发表于 2025-3-26 22:58:49 | 显示全部楼层
Conclusions: Towards an Environmental Friendly Humane Society,The future changes and alterations of the global society system as a complex chaotic system cannot be predicted accurately at the current level of science.
发表于 2025-3-27 02:28:03 | 显示全部楼层
发表于 2025-3-27 08:23:38 | 显示全部楼层
meant by an algebraic variety of semi-infinite nature. Then he applies the framework of semiderived categories, suggested in his previous monograph titled .Homological Algebra of Semimodules and Semicontramodules., (Birkhäuser, 2010), to the study of semi-infinite algebraic varieties. Quasi-coherent
发表于 2025-3-27 13:30:40 | 显示全部楼层
发表于 2025-3-27 17:17:26 | 显示全部楼层
Attila Kerényi,Richard William McIntosh number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary ap
发表于 2025-3-27 21:23:32 | 显示全部楼层
Attila Kerényi,Richard William McIntoshshow that, in contrast with the finite case, only some of these ACQs are equivalent and only some of these constants coincide, unless we assume the”weak Pshenichnyi-Levin-Valadier property” introduced in [12]. We extend most of the global error bound results of [10] from finite systems of convex ine
发表于 2025-3-28 00:46:06 | 显示全部楼层
Attila Kerényi,Richard William McIntosheme was the development of a dual program to the problem of minimizing an arbitrary convex function over an arbitrary convex set in the .-space that featured the maximization of a linear functional in non-negative variables of a generalized finite sequence space subject to a finite system of linear
发表于 2025-3-28 04:37:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 03:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表