找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Surveys in Geometry II; Athanase Papadopoulos Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spring

[复制链接]
楼主: 是消毒
发表于 2025-3-25 05:38:00 | 显示全部楼层
,Double Forms, Curvature Integrals and the Gauss–Bonnet Formula,umulative work of H. Hopf, W. Fenchel, C. B. Allendoerfer, A. Weil and S.S. Chern for higher-dimensional Riemannian manifolds. It relates the Euler characteristic of a Riemannian manifold to a curvature integral over the manifold plus a somewhat enigmatic boundary term. In this chapter, we revisit t
发表于 2025-3-25 11:19:23 | 显示全部楼层
,Quaternions, Monge–Ampère Structures and ,-Surfaces,d widespread applications in hyperbolic geometry, general relativity, Teichmüller theory, and so on. In this chapter, we present a quaternionic reformulation of these ideas. This yields simpler proofs of the main results whilst pointing towards the higher-dimensional generalisation studied by the au
发表于 2025-3-25 12:24:49 | 显示全部楼层
Lagrangian Grassmannians of Polarizations,ures on a real vector space, consisting of an inner product, a symplectic form, and a complex structure. A polarization is a decomposition of the complexified vector space into the eigenspaces of the complex structure; this information is equivalent to the specification of a compatible triple. When
发表于 2025-3-25 18:53:23 | 显示全部楼层
发表于 2025-3-25 21:13:24 | 显示全部楼层
发表于 2025-3-26 03:14:26 | 显示全部楼层
On the Geometry of Finite Homogeneous Subsets of Euclidean Spaces,of regular and semiregular polytopes in Euclidean spaces by whether or not their vertex sets have the normal homogeneity property or the Clifford–Wolf homogeneity property. Every finite homogeneous metric subspace of a Euclidean space represents the vertex set of a compact convex polytope whose isom
发表于 2025-3-26 05:45:44 | 显示全部楼层
发表于 2025-3-26 10:04:44 | 显示全部楼层
发表于 2025-3-26 13:13:12 | 显示全部楼层
发表于 2025-3-26 19:03:32 | 显示全部楼层
Lagrangian Grassmannians of Polarizations, This introduction would be useful for those interested in applications of polarizations to representation theory, loop groups, complex geometry, moduli spaces, quantization, and conformal field theory.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 09:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表