找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Survey of Text Mining; Clustering, Classifi Michael W. Berry Book 2004 Springer Science+Business Media New York 2004 algorithms.behavior.cl

[复制链接]
查看: 20062|回复: 40
发表于 2025-3-21 16:08:47 | 显示全部楼层 |阅读模式
书目名称Survey of Text Mining
副标题Clustering, Classifi
编辑Michael W. Berry
视频video
概述Includes supplementary material:
图书封面Titlebook: Survey of Text Mining; Clustering, Classifi Michael W. Berry Book 2004 Springer Science+Business Media New York 2004 algorithms.behavior.cl
描述.Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory...As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments...This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text..
出版日期Book 2004
关键词algorithms; behavior; classification; clustering; data mining; information extraction; information retriev
版次1
doihttps://doi.org/10.1007/978-1-4757-4305-0
isbn_softcover978-1-4419-3057-6
isbn_ebook978-1-4757-4305-0
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

书目名称Survey of Text Mining影响因子(影响力)




书目名称Survey of Text Mining影响因子(影响力)学科排名




书目名称Survey of Text Mining网络公开度




书目名称Survey of Text Mining网络公开度学科排名




书目名称Survey of Text Mining被引频次




书目名称Survey of Text Mining被引频次学科排名




书目名称Survey of Text Mining年度引用




书目名称Survey of Text Mining年度引用学科排名




书目名称Survey of Text Mining读者反馈




书目名称Survey of Text Mining读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:06:45 | 显示全部楼层
发表于 2025-3-22 02:56:30 | 显示全部楼层
发表于 2025-3-22 05:33:51 | 显示全部楼层
Simultaneous Clustering and Dynamic Keyword Weighting for Text Documents keyword weighting. The proposed algorithm is based on the K-Means clustering algorithm. Hence it is computationally and implementationally simple. Moreover, it learns a different set of keyword weights for each cluster. This means that, as a by-product of the clustering process, each document clust
发表于 2025-3-22 10:44:35 | 显示全部楼层
发表于 2025-3-22 13:50:40 | 显示全部楼层
发表于 2025-3-22 20:00:10 | 显示全部楼层
HotMiner: Discovering Hot Topics from Dirty Textmation needs along with their associated documents. This valuable information gives companies the potential of reducing costs and being more competitive and responsive to their customers’ needs. In particular, technical support centers could drastically lower the number of support engineers by knowi
发表于 2025-3-22 22:28:47 | 显示全部楼层
Combining Families of Information Retrieval Algorithms Using Metalearningmalizations and similarity functions. By metalearning, we mean the following simple idea: a family of IR algorithms is applied to a corpus of documents in which relevance is known to produce a learning set. A machine learning algorithm is then applied to this data set to produce a classifier that co
发表于 2025-3-23 02:49:37 | 显示全部楼层
发表于 2025-3-23 06:13:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 02:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表