找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Surface-Knots in 4-Space; An Introduction Seiichi Kamada Book 2017 Springer Nature Singapore Pte Ltd. 2017 Surface knot.Quandle and quandle

[复制链接]
查看: 17240|回复: 45
发表于 2025-3-21 18:29:36 | 显示全部楼层 |阅读模式
书目名称Surface-Knots in 4-Space
副标题An Introduction
编辑Seiichi Kamada
视频video
概述Is the first undergraduate textbook on surface knots, quandles, and two-dimensional braids.Includes a quick course on classical knot theory.Contains techniques for the motion picture method and quandl
丛书名称Springer Monographs in Mathematics
图书封面Titlebook: Surface-Knots in 4-Space; An Introduction Seiichi Kamada Book 2017 Springer Nature Singapore Pte Ltd. 2017 Surface knot.Quandle and quandle
描述This introductory volume provides the basics of surface-knots and related topics, not only for researchers in these areas but also for graduate students and researchers who are not familiar with the field..Knot theory is one of the most active research fields in modern mathematics. Knots and links are closed curves (one-dimensional manifolds) in Euclidean 3-space, and they are related to braids and 3-manifolds. These notions are generalized into higher dimensions. Surface-knots or surface-links are closed surfaces (two-dimensional manifolds) in Euclidean 4-space, which are related to two-dimensional braids and 4-manifolds. Surface-knot theory treats not only closed surfaces but also surfaces with boundaries in 4-manifolds. For example, knot concordance and knot cobordism, which are also important objects in knot theory, are surfaces in the product space of the 3-sphere and the interval..Included in this book are basics of surface-knots and the related topics ofclassical knots, the motion picture method, surface diagrams, handle surgeries, ribbon surface-knots, spinning construction, knot concordance and 4-genus, quandles and their homology theory, and two-dimensional braids..
出版日期Book 2017
关键词Surface knot; Quandle and quandle homology; 2-dimensional braid; Motion picture; Surface diagram
版次1
doihttps://doi.org/10.1007/978-981-10-4091-7
isbn_softcover978-981-13-5046-7
isbn_ebook978-981-10-4091-7Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Nature Singapore Pte Ltd. 2017
The information of publication is updating

书目名称Surface-Knots in 4-Space影响因子(影响力)




书目名称Surface-Knots in 4-Space影响因子(影响力)学科排名




书目名称Surface-Knots in 4-Space网络公开度




书目名称Surface-Knots in 4-Space网络公开度学科排名




书目名称Surface-Knots in 4-Space被引频次




书目名称Surface-Knots in 4-Space被引频次学科排名




书目名称Surface-Knots in 4-Space年度引用




书目名称Surface-Knots in 4-Space年度引用学科排名




书目名称Surface-Knots in 4-Space读者反馈




书目名称Surface-Knots in 4-Space读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:04:30 | 显示全部楼层
发表于 2025-3-22 02:17:27 | 显示全部楼层
发表于 2025-3-22 05:23:06 | 显示全部楼层
Surface Diagrams,We identify . with ., and denote by . and . the projections onto the factors.
发表于 2025-3-22 09:01:23 | 显示全部楼层
Handle Surgery and Ribbon Surface-Knots,Let . be a surface-link. A 3-disk . embedded in . is called a . attaching to . if the intersection . is a disjoint union of two 2-disks embedded in . (and in .).
发表于 2025-3-22 13:45:46 | 显示全部楼层
Spinning Construction,In this section we introduce spinning construction, which is a method of constructing 2-knots from knots.
发表于 2025-3-22 17:42:50 | 显示全部楼层
Knot Concordance,In this chapter we discuss knot concordance and cobordism. Throughout this chapter we assume that knots and links are oriented, and surfaces embedded in 4-manifolds are smooth or PL and locally flat.
发表于 2025-3-22 23:08:33 | 显示全部楼层
Quandles,Let . be a diagram of a knot (or a link), and let . be the set of arcs of ..
发表于 2025-3-23 05:24:39 | 显示全部楼层
发表于 2025-3-23 09:12:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 01:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表