找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Structural Health Monitoring Based on Data Science Techniques; Alexandre Cury,Diogo Ribeiro,Michael D. Todd Book 2022 The Editor(s) (if ap

[复制链接]
楼主: Lampoon
发表于 2025-3-25 05:35:58 | 显示全部楼层
978-3-030-81718-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-25 09:43:14 | 显示全部楼层
Structural Health Monitoring Based on Data Science Techniques978-3-030-81716-9Series ISSN 2522-560X Series E-ISSN 2522-5618
发表于 2025-3-25 13:17:44 | 显示全部楼层
Structural Integrityhttp://image.papertrans.cn/s/image/879932.jpg
发表于 2025-3-25 19:44:47 | 显示全部楼层
https://doi.org/10.1007/978-3-030-81716-9Structural Health Monitoring; Structural damage assessment; Data Science; Artificial intelligence techn
发表于 2025-3-25 23:50:31 | 显示全部楼层
Alexandre Cury,Diogo Ribeiro,Michael D. ToddPresents a collection of data science applied to structural health monitoring applications.Includes experimental and field examples of detection and identification approaches.Explains how data can be
发表于 2025-3-26 01:34:11 | 显示全部楼层
Applications of Deep Learning in Intelligent Construction,earning in construction safety, such as bolt loosening damage, structural displacement, and worker behavior. Finally, the application scenarios of deep learning in smart construction sites are further discussed.
发表于 2025-3-26 06:27:31 | 显示全部楼层
发表于 2025-3-26 10:16:28 | 显示全部楼层
发表于 2025-3-26 15:04:18 | 显示全部楼层
2522-560X tion and identification approaches.Explains how data can be .The modern structural health monitoring (SHM) paradigm of transforming in situ, real-time data acquisition into actionable decisions regarding structural performance, health state, maintenance, or life cycle assessment has been accelerated
发表于 2025-3-26 19:32:20 | 显示全部楼层
Book 2022ural performance, health state, maintenance, or life cycle assessment has been accelerated by the rapid growth of “big data” availability and advanced data science. Such data availability coupled with a wide variety of machine learning and data analytics techniques have led to rapid advancement of h
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 11:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表