找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stochastic Differential Equations; An Introduction with Bernt Øksendal Textbook 19923rd edition Springer-Verlag Berlin Heidelberg 1992 Brow

[复制链接]
楼主: HEMI
发表于 2025-3-25 06:16:51 | 显示全部楼层
Stochastic Integrals and the Ito Formula,Example 3.6 illustrates that the basic definition of Ito integrals is not very useful when we try to evaluate a given integral. This is similar to the situation for ordinary Riemann integrals, where we do not use the basic definition but rather the fundamental theorem of calculus plus the chain rule in the explicit calculations.
发表于 2025-3-25 09:35:53 | 显示全部楼层
发表于 2025-3-25 13:20:13 | 显示全部楼层
发表于 2025-3-25 16:59:13 | 显示全部楼层
发表于 2025-3-25 20:09:16 | 显示全部楼层
Ito Integrals,in equations of the form . where . and . are some given functions. Let us first concentrate on the case when the noise is 1-dimensional. It is reasonable to look for some stochastic process .. to represent the noise term, so that ..
发表于 2025-3-26 01:12:07 | 显示全部楼层
发表于 2025-3-26 05:13:30 | 显示全部楼层
Diffusions: Basic Properties,elocity of the fluid at the point . at time ., then a reasonable mathematical model for the position .. of the particle at time . would be a stochastic differential equation of the form . where .. ∈ .. denotes “white noise” and . ∈ ... The Ito interpretation of this equation is . where .. is 3-dimen
发表于 2025-3-26 11:14:30 | 显示全部楼层
发表于 2025-3-26 15:49:24 | 显示全部楼层
Application to Stochastic Control, integral, under suitable assumptions on 6 and . At the moment we will not specify the conditions on . and . further, but simply assume that the process .. satisfying (11.1) exists. See further comments on this in the end of this chapter.
发表于 2025-3-26 17:45:35 | 显示全部楼层
The Filtering Problem, of ... Similarly to the 1-dimensional situation (3.20) there is an explicit several-dimensional formula which expresses the . interpretation of (6.1): . in terms of Ito integrals as follows: . (See Stratonovich (1966)). From now on we will use the Ito interpretation (6.2).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 08:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表