找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Appl; K. G. Srinivasa,G. M. Siddesh,S. R.

[复制链接]
楼主: Hermit
发表于 2025-3-25 05:05:30 | 显示全部楼层
K. G. Srinivasa,G. M. Siddesh,S. R. ManisekharCovers the latest research in the area of bioinformatics and machine learning.Highlights the application of knowledge from biological data in various domains.Is useful for researchers and academics in
发表于 2025-3-25 10:53:41 | 显示全部楼层
发表于 2025-3-25 13:01:42 | 显示全部楼层
https://doi.org/10.1007/978-981-15-2445-5Bioinformatics; Machine Learning; Statistical Modelling; Genomics; Proteomics; Data Analytics; Structural
发表于 2025-3-25 18:31:02 | 显示全部楼层
发表于 2025-3-25 23:29:11 | 显示全部楼层
发表于 2025-3-26 02:18:47 | 显示全部楼层
Machine Learning for Bioinformaticsrform complex predictions on large datasets. ML is currently being applied in six key subfields of bioinformatics such as microarrays, evolution, systems biology, genomics, text mining, and proteomics. This chapter is composed of four sections. The first section will provide an outline of ML in bioi
发表于 2025-3-26 06:27:57 | 显示全部楼层
Machine-Learning Algorithms for Feature Selection from Gene Expression Dataes which are most relevant to the problem being studied are first selected from the entire set of genes whose values are available to us, and this is known as feature selection. There are three categories of feature selection methods—filter, wrapper and embedded. Machine learning which involves lear
发表于 2025-3-26 11:54:33 | 显示全部楼层
Visualizing Codon Usage Within and Across Genomes: Concepts and Toolsn the early days of molecular biology, codon usage studies, in our opinion, suffer from underdevelopment of easy-to-use tools to analyze and visualize how codon sequence changes along the gene and across the homologous genes in course of evolution. In this review, we aim to describe main areas of co
发表于 2025-3-26 14:59:16 | 显示全部楼层
发表于 2025-3-26 18:22:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 02:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表