找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Solving Optimization Problems with the Heuristic Kalman Algorithm; New Stochastic Metho Rosario Toscano Book 2024 The Editor(s) (if applica

[复制链接]
查看: 37881|回复: 42
发表于 2025-3-21 19:02:06 | 显示全部楼层 |阅读模式
书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm
副标题New Stochastic Metho
编辑Rosario Toscano
视频video
概述Provides a review of the main deterministic and stochastic optimization methods.Presents material that industrial engineers, postgraduates, and undergraduates in systems design will find useful.Large
丛书名称Springer Optimization and Its Applications
图书封面Titlebook: Solving Optimization Problems with the Heuristic Kalman Algorithm; New Stochastic Metho Rosario Toscano Book 2024 The Editor(s) (if applica
描述This text focuses on simple and easy-to-use design strategies for solving complex engineering problems that arise in several fields of engineering design, namely non-convex optimization problems. .The main optimization tool used in this book to tackle the problem of nonconvexity is the Heuristic Kalman Algorithm (HKA). The main characteristic of HKA is the use of a stochastic search mechanism to solve a given optimization problem. From a computational point of view, the use of a stochastic search procedure appears essential for dealing with non-convex problems..The topics discussed in this monograph include basic definitions and concepts from the classical optimization theory, the notion of the acceptable solution, machine learning, the concept of preventive maintenance, and more. .The Heuristic Kalman Algorithm discussed in this book applies to many fields such as robust structured control, electrical engineering, mechanical engineering, machine learning, reliability, and preference models. This large coverage of practical optimization problems makes this text very useful to those working on and researching systems design. The intended audience includes industrial engineers, postg
出版日期Book 2024
关键词stochastic optimization; heuristic Kalman algorithm; structured controllers; uncertain systems; robust c
版次1
doihttps://doi.org/10.1007/978-3-031-52459-2
isbn_softcover978-3-031-52461-5
isbn_ebook978-3-031-52459-2Series ISSN 1931-6828 Series E-ISSN 1931-6836
issn_series 1931-6828
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm影响因子(影响力)




书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm影响因子(影响力)学科排名




书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm网络公开度




书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm网络公开度学科排名




书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm被引频次




书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm被引频次学科排名




书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm年度引用




书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm年度引用学科排名




书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm读者反馈




书目名称Solving Optimization Problems with the Heuristic Kalman Algorithm读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:04:42 | 显示全部楼层
发表于 2025-3-22 01:11:02 | 显示全部楼层
发表于 2025-3-22 04:37:42 | 显示全部楼层
发表于 2025-3-22 09:46:01 | 显示全部楼层
发表于 2025-3-22 14:32:03 | 显示全部楼层
发表于 2025-3-22 18:03:49 | 显示全部楼层
发表于 2025-3-22 22:18:27 | 显示全部楼层
Some Notions on System Modeling,method we need to have a mathematical model of the physical system that we want to optimize. Thus, given some design specifications, this model can be used to formulate the corresponding optimization problem. To illustrate how a mathematical model of a given physical system can be obtained, two exam
发表于 2025-3-23 04:13:19 | 显示全部楼层
发表于 2025-3-23 09:03:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 17:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表