找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Simulation and Synthesis in Medical Imaging; 7th International Wo Can Zhao,David Svoboda,Maria Escobar Conference proceedings 2022 The Edit

[复制链接]
楼主: lumbar-puncture
发表于 2025-3-30 08:46:40 | 显示全部楼层
发表于 2025-3-30 16:09:58 | 显示全部楼层
发表于 2025-3-30 16:42:54 | 显示全部楼层
发表于 2025-3-30 23:03:25 | 显示全部楼层
发表于 2025-3-31 02:52:48 | 显示全部楼层
发表于 2025-3-31 05:24:40 | 显示全部楼层
,Subject-Specific Lesion Generation and Pseudo-Healthy Synthesis for Multiple Sclerosis Brain Imagesease burden and outcome. In this work, we present a novel foreground-based generative method for modelling the local lesion characteristics that can both generate synthetic lesions on healthy images and synthesize subject-specific pseudo-healthy images from pathological images. Furthermore, the prop
发表于 2025-3-31 11:20:49 | 显示全部楼层
,Generating Artificial Artifacts for Motion Artifact Detection in Chest CT,ures. Localising motion artifacts in the lungs can improve diagnosis quality. The diverse appearance of artifacts requires large quantities of annotations to train a detection model, but manual annotations can be subjective, unreliable, and are labour intensive to obtain. We propose a novel method (
发表于 2025-3-31 17:07:51 | 显示全部楼层
,Probabilistic Image Diversification to Improve Segmentation in 3D Microscopy Image Data, image data. Especially for 3D image data, generation of such annotations remains a challenge, increasing the demand for approaches making most out of existing annotations. We propose a probabilistic approach to increase image data diversity in small annotated data sets without further cost, to impr
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 19:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表