找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Simulation and Synthesis in Medical Imaging; 9th International Wo Virginia Fernandez,Jelmer M. Wolterink,Adrià Casam Conference proceedings

[复制链接]
楼主: IU421
发表于 2025-3-25 04:14:06 | 显示全部楼层
,Synthetic Augmentation for Anatomical Landmark Localization Using DDPMs,tmap of annotated landmarks. We also propose a novel way to assess the quality of the generated images using a Markov Random Field (MRF) model for landmark matching and a Statistical Shape Model (SSM) to check landmark plausibility, before we evaluate the DDPM-augmented dataset in the context of an
发表于 2025-3-25 09:06:14 | 显示全部楼层
发表于 2025-3-25 12:50:51 | 显示全部楼层
,Adapted nnU-Net: A Robust Baseline for Cross-Modality Synthesis and Medical Image Inpainting,GAN-based methods like pix2pixHD and ranks among the best methods for both challenges. We recommend this adapted nnU-Net as a new benchmark for medical image translation and inpainting tasks, and provide our implementations for public use on GitHub.
发表于 2025-3-25 16:05:36 | 显示全部楼层
发表于 2025-3-25 20:25:00 | 显示全部楼层
,Benchmarking Robustness of Endoscopic Depth Estimation with Synthetically Corrupted Data, depth estimation in endoscopic surgery, with the aim of driving progress in model refinement. A thorough analysis of two monocular depth estimation models using our framework reveals crucial information about their reliability under adverse conditions. Our results emphasize the essential need for a
发表于 2025-3-26 03:26:19 | 显示全部楼层
,A Dual-Task Mutual Learning Framework for Predicting Post-thrombectomy Cerebral Hemorrhage,tive cerebral hemorrhage. Our proposed framework incorporates two attention mechanisms, i.e., self-attention and interactive attention. Specifically, the self-attention mechanism allows the model to focus more on high-density areas in the image, which are critical for diagnosis (i.e., potential hemo
发表于 2025-3-26 08:08:37 | 显示全部楼层
发表于 2025-3-26 11:58:15 | 显示全部楼层
发表于 2025-3-26 16:30:23 | 显示全部楼层
发表于 2025-3-26 17:31:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 03:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表