找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Session-Based Recommender Systems Using Deep Learning; Reza Ravanmehr,Rezvan Mohamadrezaei Book 2024 The Editor(s) (if applicable) and The

[复制链接]
查看: 47522|回复: 35
发表于 2025-3-21 18:11:47 | 显示全部楼层 |阅读模式
书目名称Session-Based Recommender Systems Using Deep Learning
编辑Reza Ravanmehr,Rezvan Mohamadrezaei
视频video
概述Elaborates concepts and fundamentals of session-based recommender systems.Presents the usage of using deep learning techniques in session-based recommender systems from different perspectives.Aims at
图书封面Titlebook: Session-Based Recommender Systems Using Deep Learning;  Reza Ravanmehr,Rezvan Mohamadrezaei Book 2024 The Editor(s) (if applicable) and The
描述.This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). It presents the success of using deep learning techniques in many SBRS applications from different perspectives. For this purpose, the concepts and fundamentals of SBRS are fully elaborated, and different deep learning techniques focusing on the development of SBRS are studied...The book is well-modularized, and each chapter can be read in a stand-alone manner based on individual interests and needs. In the first chapter of the book, definitions and concepts related to SBRS are reviewed, and a taxonomy of different SBRS approaches is presented, where the characteristics and applications of each class are discussed separately. The second chapter starts with the basic concepts of deep learning and the characteristics of each model. Then, each deep learning model, along with its architecture and mathematical foundations, is introduced. Next, chapter 3 analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural netw
出版日期Book 2024
关键词Recommender Systems; Deep Learning; Machine Learning; Social Network Analysis; Big Data Analysis
版次1
doihttps://doi.org/10.1007/978-3-031-42559-2
isbn_softcover978-3-031-42561-5
isbn_ebook978-3-031-42559-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Session-Based Recommender Systems Using Deep Learning影响因子(影响力)




书目名称Session-Based Recommender Systems Using Deep Learning影响因子(影响力)学科排名




书目名称Session-Based Recommender Systems Using Deep Learning网络公开度




书目名称Session-Based Recommender Systems Using Deep Learning网络公开度学科排名




书目名称Session-Based Recommender Systems Using Deep Learning被引频次




书目名称Session-Based Recommender Systems Using Deep Learning被引频次学科排名




书目名称Session-Based Recommender Systems Using Deep Learning年度引用




书目名称Session-Based Recommender Systems Using Deep Learning年度引用学科排名




书目名称Session-Based Recommender Systems Using Deep Learning读者反馈




书目名称Session-Based Recommender Systems Using Deep Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:20:35 | 显示全部楼层
chapter 3 analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural netw978-3-031-42561-5978-3-031-42559-2
发表于 2025-3-22 02:00:37 | 显示全部楼层
发表于 2025-3-22 05:18:52 | 显示全部楼层
发表于 2025-3-22 12:02:23 | 显示全部楼层
发表于 2025-3-22 14:39:15 | 显示全部楼层
发表于 2025-3-22 19:48:10 | 显示全部楼层
http://image.papertrans.cn/s/image/865761.jpg
发表于 2025-3-23 00:05:15 | 显示全部楼层
发表于 2025-3-23 05:16:58 | 显示全部楼层
Reza Ravanmehr,Rezvan MohamadrezaeiElaborates concepts and fundamentals of session-based recommender systems.Presents the usage of using deep learning techniques in session-based recommender systems from different perspectives.Aims at
发表于 2025-3-23 09:14:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 10:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表