找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Self-Dual Codes and Invariant Theory; Gabriele Nebe,Eric M. Rains,Neil J.A. Sloane Book 2006 Springer-Verlag Berlin Heidelberg 2006 Code.E

[复制链接]
楼主: 畸齿矫正学
发表于 2025-3-23 13:19:02 | 显示全部楼层
Further Examples of Self-Dual Codes,This chapter describes some families of self-dual codes that cannot be obtained from representations of quasisimple form rings: codes over Z/mZ (§8.1), then the special cases of codes over Z/4Z (§8.2) and Z/8Z (§8.3), codes over more general Galois rings (§8.4), and codes over F. + F. . with . = 0 (§8.5).
发表于 2025-3-23 15:15:22 | 显示全部楼层
发表于 2025-3-23 18:31:33 | 显示全部楼层
发表于 2025-3-24 01:48:56 | 显示全部楼层
The Main Theorems,d in §5.5. They show that under quite general conditions, the invariant ring of the Clifford-Weil group .(.) associated with a finite representation . of a form ring is spanned by the complete weight enumerators of self-dual isotropic codes of Type . (and arbitrary length).
发表于 2025-3-24 04:59:43 | 显示全部楼层
发表于 2025-3-24 10:16:00 | 显示全部楼层
发表于 2025-3-24 10:46:59 | 显示全部楼层
发表于 2025-3-24 17:31:45 | 显示全部楼层
1431-1550 theorem about the weight enumerators of self-dual codes and their connections with invariant theory. In the past 35 years there have been hundreds of papers written about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory whi
发表于 2025-3-24 21:00:50 | 显示全部楼层
发表于 2025-3-25 01:23:35 | 显示全部楼层
The Category Quad,and in the proofs of the main theorems in Chapter 5. Another application will be the definition of the Witt group of representations of a form ring (§4.6). This will be used to define the universal Clifford-Weil group associated with a finite form ring (see §5.4).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 08:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表