找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Security and Privacy in Communication Networks; 14th International C Raheem Beyah,Bing Chang,Sencun Zhu Conference proceedings 2018 ICST In

[复制链接]
楼主: frustrate
发表于 2025-3-28 16:14:21 | 显示全部楼层
发表于 2025-3-28 20:08:40 | 显示全部楼层
发表于 2025-3-29 01:28:35 | 显示全部楼层
Automated Identification of Sensitive Data via Flexible User Requirementsch is able to learn users’ preferences from readable concepts initially provided by users, and automatically identify related sensitive data. We evaluate our approach on over 18,000 top popular applications from Google Play Store. S3 achieves an average precision of 89.2%, and average recall 95.8% i
发表于 2025-3-29 03:46:08 | 显示全部楼层
发表于 2025-3-29 11:18:32 | 显示全部楼层
Inferring UI States of Mobile Applications Through Power Side Channel Exploitationetection, PoWatt can still detect sensitive UIs with a reasonable precision and recall, which can be successfully exploited by real-world attacks such as screenshot-based password stealing. Finally, we discuss the limitations of PoWatt and possible mitigation techniques.
发表于 2025-3-29 14:56:12 | 显示全部楼层
发表于 2025-3-29 15:43:32 | 显示全部楼层
GranDroid: Graph-Based Detection of Malicious Network Behaviors in Android Applications accuracy. Our evaluation using 1,500 malware samples and 1,500 benign apps shows that our approach achieves 93% accuracy while spending only eight minutes to dynamically execute each app and determine its maliciousness. . can be used to provide rich and precise detection results while incurring sim
发表于 2025-3-29 23:00:43 | 显示全部楼层
FGFDect: A Fine-Grained Features Classification Model for Android Malware Detectiono benign or malware. FGFDect is evaluated on a large real-world data set consisting of 6400 malware apps and 4600 popular benign apps. Compared with those traditional approaches with coarse-grained features, extensive evaluation results demonstrate that the proposed approach exhibits an impressive d
发表于 2025-3-30 03:57:43 | 显示全部楼层
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engihttp://image.papertrans.cn/s/image/863500.jpg
发表于 2025-3-30 07:36:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 20:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表