找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Sample Efficient Multiagent Learning in the Presence of Markovian Agents; Doran Chakraborty Book 2014 Springer International Publishing Sw

[复制链接]
楼主: monster
发表于 2025-3-23 11:21:40 | 显示全部楼层
hat sich im Laufe der Jahre verschoben. Zugespitzt gesagt: Trotz divergierender Auffassungen in einzelnen Punkten schien in den frühen Jahren der Frauenbewegung das Subjekt der Bewegung klar („Wir Frauen“) und in der Solidaritäts-Diskussion ging es schwerpunktmäßig um die eher praktische Frage der
发表于 2025-3-23 16:40:18 | 显示全部楼层
发表于 2025-3-23 18:11:05 | 显示全部楼层
发表于 2025-3-23 23:04:33 | 显示全部楼层
发表于 2025-3-24 04:29:35 | 显示全部楼层
Maximizing Social Welfare in the Presence of Markovian Agents,ves close to the best response with a high probability against a set of memory-bounded agents whose memory size is upper-bounded by a known value, and achieves close to the security value against any other set of agents which cannot be represented as being .. memory-bounded. . is the first MAL algor
发表于 2025-3-24 07:00:19 | 显示全部楼层
Targeted Modeling of Markovian Agents,y close to the SW maximizing joint return by exploiting the Markovian agents maximally, in efficient sample complexity. We assume that . has some prior knowledge of the possible set of features . upon which the Markovian agents may base their policies, but not the exact set.
发表于 2025-3-24 11:32:25 | 显示全部楼层
Structure Learning in Factored MDPs,ent. Both of these subroutines assume prior knowledge of the possible set of features upon which a Markovian agent may base its policy, but not the exact set. For both of these subroutine, we pose the problem of modeling the unknown policy of a Markovian agent as learning the unknown feature space a
发表于 2025-3-24 18:00:56 | 显示全部楼层
发表于 2025-3-24 21:39:55 | 显示全部楼层
Conclusion and Future Work,uman supervision. Two important capabilities in service of this goal are learning and interaction. Learning is necessary because agent developers cannot be expected to predict the characteristics of all possible environments that the agent might come across in the future. Rather, when situated in a
发表于 2025-3-25 00:28:06 | 显示全部楼层
Structure Learning in Factored MDPs,act set. For both of these subroutine, we pose the problem of modeling the unknown policy of a Markovian agent as learning the unknown feature space and transition function of an induced MDP (induced by the Markovian agent’s policy).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-7 02:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表