找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Rotation Transforms for Computer Graphics; John Vince Textbook 2011 Springer-Verlag London Limited 2011 Computer graphics/ games.Geometric

[复制链接]
楼主: 遮蔽
发表于 2025-3-25 05:03:59 | 显示全部楼层
Bivector Rotors,axes. The three reflections theorem is used to show how geometric algebra creates similar triple constructs to quaternions. It then develops 2D and 3D rotors and shows using practical examples how they work. After showing how to extract a rotor from a bivector triple, the chapter concludes with a su
发表于 2025-3-25 08:36:52 | 显示全部楼层
发表于 2025-3-25 13:29:29 | 显示全部楼层
Matrices,tisymmetric matrices, the characteristic equation, eigenvectors and eigenvalues. The latter are eventually used to extract the axis of rotation from a rotation matrix and the angle of rotation. The chapter concludes with a summary and a list of the matrix operations covered.
发表于 2025-3-25 19:43:31 | 显示全部楼层
Textbook 2011al environment. Although the former is a trivial operation, the latter can be a challenging task. .Rotation Transforms for Computer Graphics. covers a wide range of mathematical techniques used for rotating points and frames of reference in the plane and 3D space. It includes many worked examples an
发表于 2025-3-25 20:44:24 | 显示全部楼层
发表于 2025-3-26 01:03:33 | 显示全部楼层
http://image.papertrans.cn/r/image/831836.jpg
发表于 2025-3-26 04:58:59 | 显示全部楼层
https://doi.org/10.1007/978-0-85729-154-7Computer graphics/ games; Geometric algebra; Matrices; Quaternions; Rotations
发表于 2025-3-26 11:10:32 | 显示全部楼层
978-0-85729-153-0Springer-Verlag London Limited 2011
发表于 2025-3-26 16:37:14 | 显示全部楼层
Conclusion,This last chapter reviews the book’s objectives.
发表于 2025-3-26 20:39:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 12:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表