用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Robust Latent Feature Learning for Incomplete Big Data; Di Wu Book 2023 The Author(s), under exclusive license to Springer Nature Singapor

[复制链接]
查看: 29087|回复: 43
发表于 2025-3-21 16:57:19 | 显示全部楼层 |阅读模式
书目名称Robust Latent Feature Learning for Incomplete Big Data
编辑Di Wu
视频video
概述Exposes readers to a novel research perspective regarding incomplete big data analysis.Presents several robust latent feature learning methods for incomplete big data analysis.Achieves efficient and e
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Robust Latent Feature Learning for Incomplete Big Data;  Di Wu Book 2023 The Author(s), under exclusive license to Springer Nature Singapor
描述.Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty...In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth .L.1.-norm, improving robustness of latent feature learningusing .L.1.-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent
出版日期Book 2023
关键词Latent feature learning; Representation learning; Robustness; Incomplete big data; Incomplete matrix; Mis
版次1
doihttps://doi.org/10.1007/978-981-19-8140-1
isbn_softcover978-981-19-8139-5
isbn_ebook978-981-19-8140-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
The information of publication is updating

书目名称Robust Latent Feature Learning for Incomplete Big Data影响因子(影响力)




书目名称Robust Latent Feature Learning for Incomplete Big Data影响因子(影响力)学科排名




书目名称Robust Latent Feature Learning for Incomplete Big Data网络公开度




书目名称Robust Latent Feature Learning for Incomplete Big Data网络公开度学科排名




书目名称Robust Latent Feature Learning for Incomplete Big Data被引频次




书目名称Robust Latent Feature Learning for Incomplete Big Data被引频次学科排名




书目名称Robust Latent Feature Learning for Incomplete Big Data年度引用




书目名称Robust Latent Feature Learning for Incomplete Big Data年度引用学科排名




书目名称Robust Latent Feature Learning for Incomplete Big Data读者反馈




书目名称Robust Latent Feature Learning for Incomplete Big Data读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:43:40 | 显示全部楼层
Robust Latent Feature Learning for Incomplete Big Data978-981-19-8140-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
发表于 2025-3-22 00:55:19 | 显示全部楼层
Improve Robustness of Latent Feature Learning Using Double-Space,In a high dimensional and incomplete (HDI) matrix, the original data is sparse. Among numerous missing data estimation approaches [1–12], latent feature learning (LFL) is widely studied and adopted because of its high efficiency and scalability.
发表于 2025-3-22 08:17:12 | 显示全部楼层
Di WuExposes readers to a novel research perspective regarding incomplete big data analysis.Presents several robust latent feature learning methods for incomplete big data analysis.Achieves efficient and e
发表于 2025-3-22 11:55:00 | 显示全部楼层
发表于 2025-3-22 15:15:41 | 显示全部楼层
发表于 2025-3-22 17:47:40 | 显示全部楼层
Basis of Latent Feature Learning, services are provided online. Such numerous online services lead to the problem of information overload [1, 2]. Then, an intelligent and efficient system is desired to address such problem [3, 4]. Therefore, as one of the most efficient and effective approaches for addressing information load, the recommender system has attracted much attention.
发表于 2025-3-22 23:59:39 | 显示全部楼层
Improving Robustness of Latent Feature Learning Using ,-Norm,s) to filter the required information is a very challenging problem [5, 6]. Up to now, various methods have been proposed to implement an RS, among which collaborative filtering (CF) is very popular [7–13].
发表于 2025-3-23 02:06:58 | 显示全部楼层
发表于 2025-3-23 07:11:08 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-9 18:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表