找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Robotics in Natural Settings; CLAWAR 2022 José M. Cascalho,Mohammad Osman Tokhi,Matthias Fun Conference proceedings 2023 The Editor(s) (if

[复制链接]
楼主: 呻吟
发表于 2025-3-30 09:38:09 | 显示全部楼层
A Survey of Wheeled-Legged Robotsng direction. The missing examples in nature make designing templates that capture the underlying locomotion principles cumbersome, making hybrid locomotion challenging. This paper reviews some of the novel locomotion frameworks overcoming these challenges.
发表于 2025-3-30 14:03:36 | 显示全部楼层
发表于 2025-3-30 17:41:13 | 显示全部楼层
发表于 2025-3-30 21:40:04 | 显示全部楼层
Design Optimization of a Four-Bar Leg Linkage for a Legged-Wheeled Balancing Robote minimum pitch angle correction of the robot’s base while varying the leg extension. Gravity compensation is further achieved through an optimized torsional spring. Finally, we evaluate the performance of the leg linkage and gravity compensation mechanism on real hardware.
发表于 2025-3-31 04:37:11 | 显示全部楼层
发表于 2025-3-31 06:54:48 | 显示全部楼层
Key Steps Toward Development of Humanoid Robotsbe easily understood. The extra benefit of such clearer explanation is to enable us to identify remaining challenges faced by the development of humanoid robots. Also, the well-designed invention of human-like humanoid robots will help us to discover the secrets behind the mind of human beings.
发表于 2025-3-31 09:25:41 | 显示全部楼层
Grasping Characteristics of Flexible Propulsion Unit Using Braid Mechanism for Lunar Exploration Robieve curving excavation for the second target mission, modeled the gripping force of the proposed mechanism, and measured the gripping force of the prototype using the mechanism. The experiment demonstrated the validity of the modeling and the usefulness of the proposed mechanism.
发表于 2025-3-31 14:44:00 | 显示全部楼层
发表于 2025-3-31 20:42:56 | 显示全部楼层
Control of Wheeled-Legged Quadrupeds Using Deep Reinforcement Learningf-the-arts in legged locomotion using RL, our preliminary results show that RL is a promising framework for wheeled-legged robots. The policy learns to dynamically switch between driving mode and walking mode in response to the user command and terrain.
发表于 2025-3-31 22:21:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 06:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表