找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Riemannian Geometry and Geometric Analysis; Jürgen Jost Textbook 20023rd edition Springer-Verlag Berlin Heidelberg 2002 Floer homology.Fun

[复制链接]
查看: 54540|回复: 44
发表于 2025-3-21 18:31:36 | 显示全部楼层 |阅读模式
书目名称Riemannian Geometry and Geometric Analysis
编辑Jürgen Jost
视频video
概述Established textbook.Continues to lead its readers to some of the hottest topics of contemporary mathematical research.Includes supplementary material:
丛书名称Universitext
图书封面Titlebook: Riemannian Geometry and Geometric Analysis;  Jürgen Jost Textbook 20023rd edition Springer-Verlag Berlin Heidelberg 2002 Floer homology.Fun
描述Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ... ) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ... ). By way of contrast, geometric analysis is a perhaps somewhat less system­ atic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geom­ etry stimulates progress in geometric analysis by setting ambitious goals. It is the aim of this book to be a systematic and comprehensive intro­ duction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and an­ alytic methods in the study of Riemannian manifolds. The present work is the third edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate cou
出版日期Textbook 20023rd edition
关键词Floer homology; Functionals; Riemannian geometry; curvature; derivative; differential equation; field theo
版次3
doihttps://doi.org/10.1007/978-3-662-04672-2
isbn_ebook978-3-662-04672-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 2002
The information of publication is updating

书目名称Riemannian Geometry and Geometric Analysis影响因子(影响力)




书目名称Riemannian Geometry and Geometric Analysis影响因子(影响力)学科排名




书目名称Riemannian Geometry and Geometric Analysis网络公开度




书目名称Riemannian Geometry and Geometric Analysis网络公开度学科排名




书目名称Riemannian Geometry and Geometric Analysis被引频次




书目名称Riemannian Geometry and Geometric Analysis被引频次学科排名




书目名称Riemannian Geometry and Geometric Analysis年度引用




书目名称Riemannian Geometry and Geometric Analysis年度引用学科排名




书目名称Riemannian Geometry and Geometric Analysis读者反馈




书目名称Riemannian Geometry and Geometric Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:55:13 | 显示全部楼层
0172-5939 nifolds. The present work is the third edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate cou978-3-662-04672-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
发表于 2025-3-22 04:13:10 | 显示全部楼层
发表于 2025-3-22 07:34:43 | 显示全部楼层
发表于 2025-3-22 08:51:28 | 显示全部楼层
Parallel Transport, Connections, and Covariant Derivatives,Let . be a vector field on ℝ., . a vector at ..∈ ℝ.. We want to analyse how one takes the derivative of . at .. in the direction .. For this derivative, one forms
发表于 2025-3-22 16:40:47 | 显示全部楼层
发表于 2025-3-22 19:28:12 | 显示全部楼层
,Symmetric Spaces and Kähler Manifolds,We consider the complex vector space ℂ... A complex linear subspace of ℂ.. of complex dimension one is called a line. We define the complex projective space ℂℙ. as the space of all lines in ℂ...
发表于 2025-3-22 22:13:01 | 显示全部楼层
Variational Problems from Quantum Field Theory,A prototypical situation for the functionals that we are going to consider is the following:
发表于 2025-3-23 01:58:30 | 显示全部楼层
Harmonic Maps,We let . and . be Riemannian manifolds of dimension . and ., resp.
发表于 2025-3-23 07:44:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-17 23:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表