找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Riemannian Geometry; Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 2004Latest edition Springer-Verlag Berlin Heidelberg 2004

[复制链接]
楼主: 监督
发表于 2025-3-23 10:41:06 | 显示全部楼层
发表于 2025-3-23 15:22:16 | 显示全部楼层
https://doi.org/10.1007/978-3-642-18855-8Minimal surface; Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; rela
发表于 2025-3-23 20:26:45 | 显示全部楼层
发表于 2025-3-24 00:55:10 | 显示全部楼层
Riemannian submanifolds,In this chapter, we study the relations between the Riemannian Geometry of a submanifold and that of the ambient space. It is well known that surfaces of the Euclidean space were the first examples of Riemannian manifolds to be studied. In fact, the first truly Riemannian geometry result is due to Gauss, and roughly says the following.
发表于 2025-3-24 04:08:14 | 显示全部楼层
发表于 2025-3-24 08:55:02 | 显示全部楼层
Differential Manifolds,ce a sphere, or a torus, we can decompose this surface into a finite number of parts such that each of them can be bijectively mapped into a simply-connected region of the Euclidean plane.” This is the beginning of the third chapter of “ Leç ons sur la Gé omé trie des espaces de Riemann” by Elie Car
发表于 2025-3-24 13:50:47 | 显示全部楼层
发表于 2025-3-24 15:51:07 | 显示全部楼层
发表于 2025-3-24 22:21:53 | 显示全部楼层
Textbook 2004Latest edition this third edition. During these years, Riemannian Geometry has undergone many dramatic developments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However, Riemannian Geometry is not only a fascinating field in itsel
发表于 2025-3-24 23:13:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 12:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表