找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Riemannian Geometry; Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 2004Latest edition Springer-Verlag Berlin Heidelberg 2004

[复制链接]
查看: 15783|回复: 35
发表于 2025-3-21 16:24:23 | 显示全部楼层 |阅读模式
书目名称Riemannian Geometry
编辑Sylvestre Gallot,Dominique Hulin,Jacques Lafontain
视频video
概述Includes supplementary material:
丛书名称Universitext
图书封面Titlebook: Riemannian Geometry;  Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 2004Latest edition Springer-Verlag Berlin Heidelberg 2004
描述From the preface:Many years have passed since the first edition. However, the encouragements of various readers and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic developments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However, Riemannian Geometry is not only a fascinating field in itself. It has proved to be a precious tool in other parts of mathematics. In this respect, we can quote the major breakthroughs in four-dimensional topology which occurred in the eighties and the nineties of the last century (see for instance [L2]). These have been followed, quite recently, by a possibly successful approach to the Poincaré conjecture. In another direction, Geometric Group Theory, a very active field nowadays (cf. [Gr6]), borrows many ideas from Riemannian or metric geometry. But let us stop hogging the limelight. This is justa textbook. We hope that our point of view of working intrinsically with manifolds as early as possible, and testing every new notion on a series of recurrent examples (see the introduction to the first edi
出版日期Textbook 2004Latest edition
关键词Minimal surface; Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; rela
版次3
doihttps://doi.org/10.1007/978-3-642-18855-8
isbn_softcover978-3-540-20493-0
isbn_ebook978-3-642-18855-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

书目名称Riemannian Geometry影响因子(影响力)




书目名称Riemannian Geometry影响因子(影响力)学科排名




书目名称Riemannian Geometry网络公开度




书目名称Riemannian Geometry网络公开度学科排名




书目名称Riemannian Geometry被引频次




书目名称Riemannian Geometry被引频次学科排名




书目名称Riemannian Geometry年度引用




书目名称Riemannian Geometry年度引用学科排名




书目名称Riemannian Geometry读者反馈




书目名称Riemannian Geometry读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:54:44 | 显示全部楼层
发表于 2025-3-22 02:30:37 | 显示全部楼层
发表于 2025-3-22 05:36:38 | 显示全部楼层
Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine
发表于 2025-3-22 11:35:17 | 显示全部楼层
Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine
发表于 2025-3-22 15:28:49 | 显示全部楼层
0172-5939 e hope that our point of view of working intrinsically with manifolds as early as possible, and testing every new notion on a series of recurrent examples (see the introduction to the first edi978-3-540-20493-0978-3-642-18855-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
发表于 2025-3-22 19:37:06 | 显示全部楼层
发表于 2025-3-23 00:43:47 | 显示全部楼层
Analysis on Riemannian manifolds and Ricci curvature,erties of the Laplacian on a bounded Euclidean domain and on a compact Riemannian manifold are very similar, and so are the proofs. It can be said that the difficulties of the latter case, compared with the former, are essentially conceptual.
发表于 2025-3-23 04:16:56 | 显示全部楼层
发表于 2025-3-23 09:23:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 12:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表