找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ricci Flow for Shape Analysis and Surface Registration; Theories, Algorithms Wei Zeng,Xianfeng David Gu Book 2013 Wei Zeng, Xianfeng David

[复制链接]
查看: 10824|回复: 35
发表于 2025-3-21 18:25:10 | 显示全部楼层 |阅读模式
书目名称Ricci Flow for Shape Analysis and Surface Registration
副标题Theories, Algorithms
编辑Wei Zeng,Xianfeng David Gu
视频video
概述Presents Ricci flow analysis in a simplified discrete setting.Illustrates applications from engineering and medicine that represent state-of-the-art and new exciting challenges.Written by experts in t
丛书名称SpringerBriefs in Mathematics
图书封面Titlebook: Ricci Flow for Shape Analysis and Surface Registration; Theories, Algorithms Wei Zeng,Xianfeng David Gu Book 2013 Wei Zeng, Xianfeng David
描述​Ricci Flow for Shape Analysis and Surface Registration introduces the beautiful and profound Ricci flow theory in a discrete setting. By using basic tools in linear algebra and multivariate calculus, readers can deduce all the major theorems in surface​ Ricci flow by themselves. The authors adapt the Ricci flow theory to practical computational algorithms, apply Ricci flow for shape analysis and surface registration, and demonstrate the power of Ricci flow in many applications in medical imaging, computer graphics, computer vision and wireless sensor network. Due to minimal pre-requisites, this book is accessible to engineers and medical experts, including educators, researchers, students and industry engineers who have an interest in solving real problems related to shape analysis and surface registration.  
出版日期Book 2013
关键词Diffeomorphism; Poincaré’s Conjecture; QuasiConformal; Ricci Flow; Surface Registration; Uniformization
版次1
doihttps://doi.org/10.1007/978-1-4614-8781-4
isbn_softcover978-1-4614-8780-7
isbn_ebook978-1-4614-8781-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightWei Zeng, Xianfeng David Gu 2013
The information of publication is updating

书目名称Ricci Flow for Shape Analysis and Surface Registration影响因子(影响力)




书目名称Ricci Flow for Shape Analysis and Surface Registration影响因子(影响力)学科排名




书目名称Ricci Flow for Shape Analysis and Surface Registration网络公开度




书目名称Ricci Flow for Shape Analysis and Surface Registration网络公开度学科排名




书目名称Ricci Flow for Shape Analysis and Surface Registration被引频次




书目名称Ricci Flow for Shape Analysis and Surface Registration被引频次学科排名




书目名称Ricci Flow for Shape Analysis and Surface Registration年度引用




书目名称Ricci Flow for Shape Analysis and Surface Registration年度引用学科排名




书目名称Ricci Flow for Shape Analysis and Surface Registration读者反馈




书目名称Ricci Flow for Shape Analysis and Surface Registration读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:02:33 | 显示全部楼层
Riemann Surface,Riemann surface theory studies the invariants under conformal transformation group. This chapter briefly introduces the Riemann surface theory [7], including quasi-conformal mapping [1], Teichmüller space [3, 12], and surface harmonic maps [10, 11]. Finally, the Teichmüller theory of harmonic maps [13] is covered.
发表于 2025-3-22 02:09:29 | 显示全部楼层
发表于 2025-3-22 06:56:57 | 显示全部楼层
发表于 2025-3-22 08:59:57 | 显示全部楼层
SpringerBriefs in Mathematicshttp://image.papertrans.cn/r/image/830185.jpg
发表于 2025-3-22 16:07:21 | 显示全部楼层
https://doi.org/10.1007/978-1-4614-8781-4Diffeomorphism; Poincaré’s Conjecture; QuasiConformal; Ricci Flow; Surface Registration; Uniformization
发表于 2025-3-22 19:50:34 | 显示全部楼层
Introduction,rphisms, isometries, conformal transformations, and rigid motions) and group actions on shape spaces. In order to perform surface registration and shape analysis in the shape space and the mapping space, Ricci flow is introduced, which leads to the celebrated uniformization theorem.
发表于 2025-3-23 01:10:46 | 显示全部楼层
978-1-4614-8780-7Wei Zeng, Xianfeng David Gu 2013
发表于 2025-3-23 04:01:37 | 显示全部楼层
Ricci Flow for Shape Analysis and Surface Registration978-1-4614-8781-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
发表于 2025-3-23 06:30:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-15 17:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表