找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Restricted-Orientation Convexity; Eugene Fink,Derick Wood Book 2004 Springer-Verlag Berlin Heidelberg 2004 Euclidean geometry.Generalized

[复制链接]
查看: 16022|回复: 39
发表于 2025-3-21 19:03:11 | 显示全部楼层 |阅读模式
书目名称Restricted-Orientation Convexity
编辑Eugene Fink,Derick Wood
视频video
概述First book on the topic
丛书名称Monographs in Theoretical Computer Science. An EATCS Series
图书封面Titlebook: Restricted-Orientation Convexity;  Eugene Fink,Derick Wood Book 2004 Springer-Verlag Berlin Heidelberg 2004 Euclidean geometry.Generalized
描述.Restricted-orientation convexity is the study of geometric objects whose intersections with lines from some fixed set are connected. This notion generalizes standard convexity and several types of nontraditional convexity. We explore the properties of this generalized convexity in multidimensional Euclidean space, describes restricted-orientation analogs of lines, hyperplanes, flats, and halfspaces, and identify major properties of standard convex sets that also hold for restricted-orientation convexity. We then introduce the notion of strong restricted-orientation convexity, which is an alternative generalization of convexity, and show that its properties are also similar to those of standard convexity. .
出版日期Book 2004
关键词Euclidean geometry; Generalized convexity; Higher dimensions; Theory; Visibility; algorithms; algorithm an
版次1
doihttps://doi.org/10.1007/978-3-642-18849-7
isbn_softcover978-3-642-62323-3
isbn_ebook978-3-642-18849-7Series ISSN 1431-2654 Series E-ISSN 2193-2069
issn_series 1431-2654
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

书目名称Restricted-Orientation Convexity影响因子(影响力)




书目名称Restricted-Orientation Convexity影响因子(影响力)学科排名




书目名称Restricted-Orientation Convexity网络公开度




书目名称Restricted-Orientation Convexity网络公开度学科排名




书目名称Restricted-Orientation Convexity被引频次




书目名称Restricted-Orientation Convexity被引频次学科排名




书目名称Restricted-Orientation Convexity年度引用




书目名称Restricted-Orientation Convexity年度引用学科排名




书目名称Restricted-Orientation Convexity读者反馈




书目名称Restricted-Orientation Convexity读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:03:43 | 显示全部楼层
Closing Remarks,We have defined two generalizations of convexity in higher dimensions, called O-convexity and strong O-convexity, and investigated their properties. We conclude with a summary of the main results (Sect. 7.1), related conjectures (Sect. 7.2), and directions for future research (Sect. 7.3).
发表于 2025-3-22 01:22:15 | 显示全部楼层
发表于 2025-3-22 07:10:17 | 显示全部楼层
发表于 2025-3-22 09:41:39 | 显示全部楼层
发表于 2025-3-22 13:48:57 | 显示全部楼层
Computational Problems,ernels, and identifying the regions visible from a given point. Researchers addressed the analogous standard-convexity problems in the early days of computational geometry; for example, consult the text of Preparata and Shamos [34]. They also developed similar techniques for several types of non-traditional convexity, including planar O-convexity.
发表于 2025-3-22 20:52:13 | 显示全部楼层
发表于 2025-3-22 22:21:32 | 显示全部楼层
Generalized Halfspaces, them with standard halfspaces (Sect. 5.1). Then, we define directed O-halfspaces, which are a subclass of O-halfspaces with several special properties (Sect. 5.2). Finally, we characterize O-halfspaces in terms of their boundaries (Sect. 5.3) and complements (Sect. 5.4).
发表于 2025-3-23 03:20:11 | 显示全部楼层
Strong Convexity,ve a condition for the equivalence of two orientation sets (Sect. 6.2). Finally, we study strongly O-convex halfspaces and characterize strongly O-convex sets through halfspace intersections (Sect. 6.3).
发表于 2025-3-23 05:46:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 10:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表