找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Representation Learning; Propositionalization Nada Lavrač,Vid Podpečan,Marko Robnik-Šikonja Book 2021 Springer Nature Switzerland AG 2021 e

[复制链接]
楼主: Bunion
发表于 2025-3-23 12:08:56 | 显示全部楼层
Introduction to Representation Learning,earning methods, which transform data instances into a vector space, is that similarities of the original data instances and their relations are expressed as distances and directions in the target vector space, allowing for similar instances to be grouped based on these properties.
发表于 2025-3-23 17:04:39 | 显示全部楼层
Book 2021rn data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, e
发表于 2025-3-23 20:26:28 | 显示全部楼层
发表于 2025-3-23 23:21:11 | 显示全部楼层
发表于 2025-3-24 06:25:29 | 显示全部楼层
Propositionalization of Relational Data, directly from relational data, developed in the Inductive Logic Programming research community, this chapter addresses the propositionalization approach of first transforming a relational database into a single-table representation, followed by a model or pattern construction step using a standard
发表于 2025-3-24 07:04:55 | 显示全部楼层
发表于 2025-3-24 12:43:14 | 显示全部楼层
Unified Representation Learning Approaches,ceted approach to symbolic or numeric feature construction, respectively. At the core of this similarity between different approaches is their common but . use of different similarity functions. In this chapter, we take a step forward by . using similarities between entities to construct the embeddi
发表于 2025-3-24 16:15:58 | 显示全部楼层
发表于 2025-3-24 22:38:52 | 显示全部楼层
发表于 2025-3-25 02:32:29 | 显示全部楼层
https://doi.org/10.1007/978-3-030-68817-2embeddings; data fusion; heterogeneous data mining; relational data mining; feature construction; proposi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 05:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表