找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Representation Learning; Propositionalization Nada Lavrač,Vid Podpečan,Marko Robnik-Šikonja Book 2021 Springer Nature Switzerland AG 2021 e

[复制链接]
查看: 41338|回复: 40
发表于 2025-3-21 19:37:26 | 显示全部楼层 |阅读模式
书目名称Representation Learning
副标题Propositionalization
编辑Nada Lavrač,Vid Podpečan,Marko Robnik-Šikonja
视频video
概述Representation learning for cutting-edge machine learning – the benefit is a unifying approach to data fusion and transformation into compact tabular format used in standard learners and modern deep n
图书封面Titlebook: Representation Learning; Propositionalization Nada Lavrač,Vid Podpečan,Marko Robnik-Šikonja Book 2021 Springer Nature Switzerland AG 2021 e
描述This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
出版日期Book 2021
关键词embeddings; data fusion; heterogeneous data mining; relational data mining; feature construction; proposi
版次1
doihttps://doi.org/10.1007/978-3-030-68817-2
isbn_softcover978-3-030-68819-6
isbn_ebook978-3-030-68817-2
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Representation Learning影响因子(影响力)




书目名称Representation Learning影响因子(影响力)学科排名




书目名称Representation Learning网络公开度




书目名称Representation Learning网络公开度学科排名




书目名称Representation Learning被引频次




书目名称Representation Learning被引频次学科排名




书目名称Representation Learning年度引用




书目名称Representation Learning年度引用学科排名




书目名称Representation Learning读者反馈




书目名称Representation Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:11:40 | 显示全部楼层
Nada Lavrač,Vid Podpečan,Marko Robnik-Šikonja the structural build-up by means of a rapid penetration test and a newly proposed modified cone geometry. These tests enable to realistically describe the material behaviour of new, environmentally friendly 3D printable mixtures with coarse aggregates. The results attained provide a foundation for
发表于 2025-3-22 01:10:59 | 显示全部楼层
发表于 2025-3-22 05:42:36 | 显示全部楼层
Graph and Heterogeneous Network Transformations,s, and selected approaches to embedding heterogeneous information networks. We present a method for propositionalizing text enriched heterogeneous information networks and a method for heterogeneous network decomposition in Sect. 5.3. Ontology transformations for semantic data mining are presented i
发表于 2025-3-22 12:26:06 | 显示全部楼层
Book 2021raph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
发表于 2025-3-22 15:49:01 | 显示全部楼层
ht using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.978-3-030-68819-6978-3-030-68817-2
发表于 2025-3-22 19:14:23 | 显示全部楼层
t tabular format used in standard learners and modern deep nThis monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity
发表于 2025-3-23 00:47:45 | 显示全部楼层
发表于 2025-3-23 04:42:00 | 显示全部楼层
发表于 2025-3-23 06:53:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 23:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表