找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Relativistic Quantum Mechanics; Wave Equations Walter Greiner Textbook 19972nd edition Springer-Verlag Berlin Heidelberg 1997 Dirac equatio

[复制链接]
查看: 11309|回复: 61
发表于 2025-3-21 19:25:34 | 显示全部楼层 |阅读模式
书目名称Relativistic Quantum Mechanics
副标题Wave Equations
编辑Walter Greiner
视频video
图书封面Titlebook: Relativistic Quantum Mechanics; Wave Equations Walter Greiner Textbook 19972nd edition Springer-Verlag Berlin Heidelberg 1997 Dirac equatio
描述Relativistic Quantum Mechanics - Wave Equations concentrates mainly on the wave equations for spin-0 and spin-1/2 particles. Chapter 1 deals with the Klein-Gordon equation and its properties and applications. The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions. Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein‘s paradox, and relativistic symmetry principles. Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner). The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course.
出版日期Textbook 19972nd edition
关键词Dirac equation; Lorentz covariance; Lorentz transformation; mechanics; quantum mechanics; reflection; rela
版次2
doihttps://doi.org/10.1007/978-3-662-03425-5
isbn_ebook978-3-662-03425-5
copyrightSpringer-Verlag Berlin Heidelberg 1997
The information of publication is updating

书目名称Relativistic Quantum Mechanics影响因子(影响力)




书目名称Relativistic Quantum Mechanics影响因子(影响力)学科排名




书目名称Relativistic Quantum Mechanics网络公开度




书目名称Relativistic Quantum Mechanics网络公开度学科排名




书目名称Relativistic Quantum Mechanics被引频次




书目名称Relativistic Quantum Mechanics被引频次学科排名




书目名称Relativistic Quantum Mechanics年度引用




书目名称Relativistic Quantum Mechanics年度引用学科排名




书目名称Relativistic Quantum Mechanics读者反馈




书目名称Relativistic Quantum Mechanics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:41:14 | 显示全部楼层
http://image.papertrans.cn/r/image/826236.jpg
发表于 2025-3-22 04:22:25 | 显示全部楼层
发表于 2025-3-22 07:48:03 | 显示全部楼层
A Wave Equation for Spin-1/2 Particles: The Dirac Equation,ite probability density. At that time there were doubts concerning the Klein—Gordon equation, which did not yield such probability density [see (1.29)]. The charge density interpretation was not known at that time and would have made little physical sense, because π. and π. mesons as charged spin-0 particles had not yet been discovered.
发表于 2025-3-22 10:23:40 | 显示全部楼层
发表于 2025-3-22 15:56:06 | 显示全部楼层
Projection Operators for Energy and Spin,treatment of complicated expressions; especially the calculation of traces of products of many γ matrices. It is based on a ., i.e. a method to project a spinor with a given sign of energy and fixed polarization out of a general wave function or a wave packet. The appropriate operators which achieve this are called ..
发表于 2025-3-22 19:57:57 | 显示全部楼层
Wave Packets of Plane Dirac Waves,f the free solutions, we study wave packets. These are superpositions of plane waves which yield localized wave functions in space time. Since the Dirac equation is a linear wave equation, the wave packets are also solutions of the free Dirac equation, which is just the superposition principle.
发表于 2025-3-22 22:40:57 | 显示全部楼层
,The Foldy—Wouthuysen Representation for Free Particles, to positive (negative) energy states, the upper (lower) two components beecome large compared to the lower (uppeer) two components [cf. (2.44), (2.72)]. The question arises, whether there exists a representation that reflects this property as a general feature, i.e. also for large velocities of the particles.
发表于 2025-3-23 01:31:27 | 显示全部楼层
发表于 2025-3-23 08:30:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 04:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表