用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Relational Data Mining; Sašo Džeroski,Nada Lavrač Book 2001 Springer-Verlag Berlin Heidelberg 2001 Algorithmic Learning.Data Analysis.Data

[复制链接]
查看: 26667|回复: 55
发表于 2025-3-21 17:38:42 | 显示全部楼层 |阅读模式
书目名称Relational Data Mining
编辑Sašo Džeroski,Nada Lavrač
视频video
概述The first book on Relational Data Mining.Includes supplementary material:
图书封面Titlebook: Relational Data Mining;  Sašo Džeroski,Nada Lavrač Book 2001 Springer-Verlag Berlin Heidelberg 2001 Algorithmic Learning.Data Analysis.Data
描述As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining..This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
出版日期Book 2001
关键词Algorithmic Learning; Data Analysis; Data Mining; Inductive Logic Programming; Knowledge Discovery; Knowl
版次1
doihttps://doi.org/10.1007/978-3-662-04599-2
isbn_softcover978-3-642-07604-6
isbn_ebook978-3-662-04599-2
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

书目名称Relational Data Mining影响因子(影响力)




书目名称Relational Data Mining影响因子(影响力)学科排名




书目名称Relational Data Mining网络公开度




书目名称Relational Data Mining网络公开度学科排名




书目名称Relational Data Mining被引频次




书目名称Relational Data Mining被引频次学科排名




书目名称Relational Data Mining年度引用




书目名称Relational Data Mining年度引用学科排名




书目名称Relational Data Mining读者反馈




书目名称Relational Data Mining读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:21:07 | 显示全部楼层
发表于 2025-3-22 03:43:02 | 显示全部楼层
Knowledge Discovery in Databases: An Overviewn support databases where analysis and exploration operations are essential. Inductive logic programming can potentially play some key roles in KDD. We define the basic notions in data mining and KDD, define the goals, present motivation, and give a high-level definition of the KDD Process and how i
发表于 2025-3-22 07:15:57 | 显示全部楼层
An Introduction to Inductive Logic Programmingth data stored in multiple tables, ILP systems are usually able to take into account generally valid background (domain) knowledge in the form of a logic program. They also use the powerful language of logic programs for describing discovered patterns. This chapter introduces the basics of logic pro
发表于 2025-3-22 10:42:59 | 显示全部楼层
Inductive Logic Programming for Knowledge Discovery in Databasesl databases. This reduces the need for manual preprocessing and allows problems to be treated that cannot be handled easily with standard single-table methods. This paper provides a tutorial-style introduction to the topic, beginning with a detailed explanation of why and where one might be interest
发表于 2025-3-22 13:10:36 | 显示全部楼层
发表于 2025-3-22 20:53:20 | 显示全部楼层
发表于 2025-3-22 21:58:02 | 显示全部楼层
Relational Rule Induction with CP,4.4: A Tutorial Introductionource code, the reader is guided through the development of Progol input files containing type definitions, mode declarations, background knowledge, examples and integrity constraints. The theory behind the system is then described using a simple example as illustration. The main algorithms in . are
发表于 2025-3-23 01:23:13 | 显示全部楼层
发表于 2025-3-23 07:15:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 20:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表