找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reinforcement Learning; State-of-the-Art Marco Wiering,Martijn Otterlo Book 2012 Springer-Verlag Berlin Heidelberg 2012 Artificial Intellig

[复制链接]
查看: 6725|回复: 51
发表于 2025-3-21 16:55:53 | 显示全部楼层 |阅读模式
书目名称Reinforcement Learning
副标题State-of-the-Art
编辑Marco Wiering,Martijn Otterlo
视频video
概述Covers all important recent developments in reinforcement learning.Very good introduction and explanation of the different emerging areas in Reinforcement Learning.Includes a survey of previous papers
丛书名称Adaptation, Learning, and Optimization
图书封面Titlebook: Reinforcement Learning; State-of-the-Art Marco Wiering,Martijn Otterlo Book 2012 Springer-Verlag Berlin Heidelberg 2012 Artificial Intellig
描述.Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade..The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research..Marco Wiering works at the artificial intelligence department of the University of Groningen i
出版日期Book 2012
关键词Artificial Intelligence; Computational Intelligence; Decision-Theoretic Planning; Dynamic Programming; M
版次1
doihttps://doi.org/10.1007/978-3-642-27645-3
isbn_softcover978-3-642-44685-6
isbn_ebook978-3-642-27645-3Series ISSN 1867-4534 Series E-ISSN 1867-4542
issn_series 1867-4534
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

书目名称Reinforcement Learning影响因子(影响力)




书目名称Reinforcement Learning影响因子(影响力)学科排名




书目名称Reinforcement Learning网络公开度




书目名称Reinforcement Learning网络公开度学科排名




书目名称Reinforcement Learning被引频次




书目名称Reinforcement Learning被引频次学科排名




书目名称Reinforcement Learning年度引用




书目名称Reinforcement Learning年度引用学科排名




书目名称Reinforcement Learning读者反馈




书目名称Reinforcement Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:23:08 | 显示全部楼层
发表于 2025-3-22 01:07:47 | 显示全部楼层
Least-Squares Methods for Policy Iterationor the overall resulting approximate policy iteration, we provide guarantees on the performance obtained asymptotically, as the number of samples processed and iterations executed grows to infinity. We also provide finite-sample results, which apply when a finite number of samples and iterations are
发表于 2025-3-22 07:52:28 | 显示全部楼层
Learning and Using Modelshe types of models used in model-based methods and ways of learning them, as well as methods for planning on these models. In addition, we examine the typical architectures for combining model learning and planning, which vary depending on whether the designer wants the algorithm to run on-line, in
发表于 2025-3-22 10:01:53 | 显示全部楼层
Reinforcement Learning in Continuous State and Action Spacesblems and discuss many specific algorithms. Amongst others, we cover gradient-based temporal-difference learning, evolutionary strategies, policy-gradient algorithms and (natural) actor-critic methods. We discuss the advantages of different approaches and compare the performance of a state-of-the-ar
发表于 2025-3-22 13:27:37 | 显示全部楼层
Predictively Defined Representations of Stateal system problem, it is particularly useful in a model-based RL context, when an agent must learn a representation of state and a model of system dynamics online: because the representation (and hence all of the model’s parameters) are defined using only statistics of observable quantities, their l
发表于 2025-3-22 18:19:36 | 显示全部楼层
发表于 2025-3-22 23:48:44 | 显示全部楼层
发表于 2025-3-23 02:45:51 | 显示全部楼层
wird. Darüber hinaus sind ihrer Überzeugung nach Begabung und Persönlichkeit bedeutsam. Nach Darstellung der Studie und einer Interpretation der Ergebnisse werden abschließend Konsequenzen für eine nachhaltige Wirksamkeit des Praxissemesters mit dem Format des Forschenden Lernens diskutiert.
发表于 2025-3-23 08:58:40 | 显示全部楼层
genen Handlungssituationen, auf die Auseinandersetzung mit Unterrichtsbeobachtungen als Reflexionsfolie für eine theoretisch gestützte Diskussion professionellen Handelns sowie auf den ebenfalls theoriegestützten Entwurf von Handlungsalternativen. Gerahmt wird die eigenständige forschungsbezogene Ak
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 22:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表