找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Regular and Chaotic Dynamics; A. J. Lichtenberg,M. A. Lieberman Book 1992Latest edition Springer Science+Business Media New York 1992 Hami

[复制链接]
查看: 29094|回复: 40
发表于 2025-3-21 19:33:01 | 显示全部楼层 |阅读模式
书目名称Regular and Chaotic Dynamics
编辑A. J. Lichtenberg,M. A. Lieberman
视频video
丛书名称Applied Mathematical Sciences
图书封面Titlebook: Regular and Chaotic Dynamics;  A. J. Lichtenberg,M. A. Lieberman Book 1992Latest edition Springer Science+Business Media New York 1992 Hami
描述What‘s in a name? The original title of our book, Regular and Stochastic Motion, was chosen to emphasize Hamiltonian dynamics and the physical motion of bodies. The new edition is more evenhanded, with considerably more discussion of dissipative systems and dynamics not involving physical motion. To reflect this partial change of emphasis, we have substituted the more general terms in our title. The common usage of the new terms clarifies the emphasis of the book. The main change in the book has been to expand the sections on dissipative dynamics, including discussion of renormalization, circle maps, intermittancy, crises, transient chaos, multifractals, reconstruction, and coupled mapping systems. These topics were either mainly in the mathemati­ cal literature or essentially unstudied when our first edition was written. The volume of work in these areas has surpassed that in Hamiltonian dynamics within the past few years. We have also made changes in the Hamiltonian sections, adding many new topics such as more general transformation and stability theory, connected stochasticity in two-dimensional maps, converse KAM theory, new topics in diffusion theory, and an approach to equil
出版日期Book 1992Latest edition
关键词Hamiltonsche Bewegungsgleichungen; Motion; Nichtlineare Schwingung; Stochastischer Prozess; Störung (Mat
版次2
doihttps://doi.org/10.1007/978-1-4757-2184-3
isbn_softcover978-1-4419-3100-9
isbn_ebook978-1-4757-2184-3Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1992
The information of publication is updating

书目名称Regular and Chaotic Dynamics影响因子(影响力)




书目名称Regular and Chaotic Dynamics影响因子(影响力)学科排名




书目名称Regular and Chaotic Dynamics网络公开度




书目名称Regular and Chaotic Dynamics网络公开度学科排名




书目名称Regular and Chaotic Dynamics被引频次




书目名称Regular and Chaotic Dynamics被引频次学科排名




书目名称Regular and Chaotic Dynamics年度引用




书目名称Regular and Chaotic Dynamics年度引用学科排名




书目名称Regular and Chaotic Dynamics读者反馈




书目名称Regular and Chaotic Dynamics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:06:44 | 显示全部楼层
发表于 2025-3-22 01:42:13 | 显示全部楼层
发表于 2025-3-22 07:07:37 | 显示全部楼层
Book 1992Latest editionof bodies. The new edition is more evenhanded, with considerably more discussion of dissipative systems and dynamics not involving physical motion. To reflect this partial change of emphasis, we have substituted the more general terms in our title. The common usage of the new terms clarifies the emp
发表于 2025-3-22 09:37:54 | 显示全部楼层
发表于 2025-3-22 14:35:38 | 显示全部楼层
发表于 2025-3-22 19:56:29 | 显示全部楼层
Transition to Global Stochasticity,iated with resonances. These regions persist for any nonzero perturbation strength ., although their area tends to zero as . → 0. Therefore, there is no abrupt “transition to stochasticity” at some critical ., and one must define carefully the meaning of any such criterion.
发表于 2025-3-22 23:44:26 | 显示全部楼层
Stochastic Motion and Diffusion,t exist, a complete description of the motion is generally impractical. We can then seek to treat the motion in a statistical sense. That is, the evolution of certain average quantities can be determined, rather than the trajectory corresponding to a given set of initial conditions (e.g., Chandrasek
发表于 2025-3-23 02:31:00 | 显示全部楼层
发表于 2025-3-23 06:30:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 14:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表