找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Recommender Systems Handbook; Francesco Ricci,Lior Rokach,Bracha Shapira Book 2022Latest edition Springer Science+Business Media, LLC, par

[复制链接]
楼主: 表范围
发表于 2025-3-28 16:28:05 | 显示全部楼层
Advances in Collaborative Filtering. The CF methods discussed in this chapter have been proposed a decade ago but still show state-of-the art accuracy in recent studies. The modeling patterns identified in this chapter are applicable to a variety of recommender problems such as item recommendation, rating prediction, cold start recommendation and context-aware recommenders.
发表于 2025-3-28 19:47:33 | 显示全部楼层
发表于 2025-3-29 02:42:14 | 显示全部楼层
发表于 2025-3-29 04:34:45 | 显示全部楼层
发表于 2025-3-29 08:37:51 | 显示全部楼层
发表于 2025-3-29 13:35:42 | 显示全部楼层
发表于 2025-3-29 19:27:28 | 显示全部楼层
Advances in Collaborative FilteringF algorithms have shown great prediction quality both in academic research and in industrial applications. This chapter surveys core methods in the field. Matrix factorization techniques, which became a first choice for implementing CF, are described together with other innovations. We also describe
发表于 2025-3-29 22:32:20 | 显示全部楼层
发表于 2025-3-30 03:11:22 | 显示全部楼层
发表于 2025-3-30 05:12:38 | 显示全部楼层
Context-Aware Recommender Systems: From Foundations to Recent Developmentson, information retrieval, ubiquitous and mobile computing, data mining, marketing, and management. Prior work has extensively demonstrated that relevant contextual information does matter in recommender systems and that it is important to take this information into account when providing recommenda
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 19:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表