找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Recent Trends in Materials and Devices; Proceedings of ICRTM Vinod Kumar Jain,Sunita Rattan,Abhishek Verma Conference proceedings 2020 The

[复制链接]
楼主: affront
发表于 2025-3-28 15:18:19 | 显示全部楼层
Adarsh Kumarith concepts from the UMLS, and split in an equally-sized training and test set. The best performance on the training set was obtained with a terminology that contained the intersection of the translated terms in combination with several post-processing steps to reduce the number of false-positive d
发表于 2025-3-28 19:52:39 | 显示全部楼层
Ch. Kartikeshwar Patro,Aakarti Garg,Rohit Verma,Ravindra Dhar,Roman Dabrowskined by personal phrases considerably outperformed those from non-personal sentences, indicating their greater suitability for the AP task. We consider these findings could be further applied in the design of strategies for the construction of AP corpora, novel feature selection methods, as well as n
发表于 2025-3-29 00:09:44 | 显示全部楼层
Shivani A. Kumar,H. Prakash,N. Chandra,R. Prakashned by personal phrases considerably outperformed those from non-personal sentences, indicating their greater suitability for the AP task. We consider these findings could be further applied in the design of strategies for the construction of AP corpora, novel feature selection methods, as well as n
发表于 2025-3-29 06:35:19 | 显示全部楼层
发表于 2025-3-29 10:50:23 | 显示全部楼层
发表于 2025-3-29 15:09:45 | 显示全部楼层
Adarsh Kumart focus on the fine-grained recognition still lacks. We revisit the previously unfruitful neural approaches to improve recognition performance for the fine-grained entities. In this paper, we test the feasibility and quality of multitask learning (MTL) to improve fine-grained PICO recognition using
发表于 2025-3-29 19:10:59 | 显示全部楼层
发表于 2025-3-29 21:28:44 | 显示全部楼层
Satendra Kumar,Rohit Verma,Ravindra Dhart focus on the fine-grained recognition still lacks. We revisit the previously unfruitful neural approaches to improve recognition performance for the fine-grained entities. In this paper, we test the feasibility and quality of multitask learning (MTL) to improve fine-grained PICO recognition using
发表于 2025-3-30 01:35:35 | 显示全部楼层
Navshad Alam,Tahira Khatoon,Vishal Singh Chandel,Rashmiduces a framework to reuse and customise existing real-life data collections. The framework outlines the eligibility criteria and the data structure requirements needed for this task. It also details the process to transform the data into a ground-truth dataset. We apply this framework to two existi
发表于 2025-3-30 07:58:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-17 23:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表