找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Recent Developments in Fractals and Related Fields; Conference on Fracta Julien Barral,Stéphane Seuret Conference proceedings 2017 Springer

[复制链接]
楼主: Strategy
发表于 2025-3-30 12:04:51 | 显示全部楼层
Some Problems on the Boundary of Fractal Geometry and Additive Combinatorics,wth of entropy of convolutions. We explain the main result on ., and derive, via a linearization argument, an analogous result for the action of the affine group on .. We also develop versions of the results for entropy dimension and Hausdorff dimension. The method is applied to two problems on the
发表于 2025-3-30 12:46:20 | 显示全部楼层
发表于 2025-3-30 18:07:59 | 显示全部楼层
发表于 2025-3-30 22:29:56 | 显示全部楼层
发表于 2025-3-31 01:41:45 | 显示全部楼层
A Survey on the Dimension Theory in Dynamical Diophantine Approximation,cuses on the size of dynamically defined limsup sets in the sense of measure and dimension. This quantitative study is motivated by the qualitative nature of the density of the orbits and the connections with the classic Diophantine approximation. In this survey, we collect some recent progress on t
发表于 2025-3-31 07:27:11 | 显示全部楼层
发表于 2025-3-31 09:49:10 | 显示全部楼层
Multifractal Properties of Convex Hulls of Typical Continuous Functions,a dense .. subset . such that for . the following properties are satisfied. For . = 1, 2 the functions .. and . coincide only on a set of zero Hausdorff dimension, the functions .. are continuously differentiable on (0, 1)., . equals the boundary of [0, 1]., ., . and . if . ∈ (0, +.).{1}.
发表于 2025-3-31 14:50:31 | 显示全部楼层
Small Union with Large Set of Centers,ton (0 ≤ . < .) of an .-dimensional cube centered at the origin or the .-skeleton of a more general polytope of .. We also study the case when we allow not only scaled copies but also scaled and rotated copies and also the case when we allow only rotated copies.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 15:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表