找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Real Analysis; Foundations and Func Miklós Laczkovich,Vera T. Sós Textbook 2015 Springer New York 2015 Fourier series.Stieltjes integral.co

[复制链接]
楼主: ACE313
发表于 2025-3-23 12:56:05 | 显示全部楼层
Functions of Bounded Variation,ce between either sum and the integral is at most ., the oscillatory sum corresponding to ...Thus the oscillatory sum is an upper bound for the difference between the approximating sums and the integral..We also know that if . is integrable, then the oscillating sum can become smaller than any fixed
发表于 2025-3-23 14:04:32 | 显示全部楼层
发表于 2025-3-23 19:24:20 | 显示全部楼层
The Improper Integral,nts of the interval) and are bounded on that interval. These restrictions are sometimes too strict; there are problems whose solutions require us to integrate functions on unbounded intervals, or that themselves might not be bounded.
发表于 2025-3-24 01:25:46 | 显示全部楼层
发表于 2025-3-24 03:46:46 | 显示全部楼层
The Definite Integral,This concept, in contrast to that of the indefinite integral, assigns numbers to functions (and not a family of functions). In the next chapter, we will see that as the name . that they share indicates, there is a strong connection between the two concepts of integrals.
发表于 2025-3-24 09:43:34 | 显示全部楼层
Functions of Bounded Variation,ence between the approximating sums and the integral..We also know that if . is integrable, then the oscillating sum can become smaller than any fixed positive number for a sufficiently fine partition (see Theorem 14.23).
发表于 2025-3-24 12:30:10 | 显示全部楼层
Infinite Sequences II, that is, .. ≠ 0 for all . > .., then 1 ≤ .. ≤ 9, and so . also holds if . > ... By Theorem 4.17, .. Thus for a given . > 0, there is an .. such that . for all . > ... So if ., then ., and thus .. → 1.
发表于 2025-3-24 15:49:08 | 显示全部楼层
发表于 2025-3-24 21:55:54 | 显示全部楼层
发表于 2025-3-24 23:12:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 18:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表