找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Real Analysis; Foundations and Func Miklós Laczkovich,Vera T. Sós Textbook 2015 Springer New York 2015 Fourier series.Stieltjes integral.co

[复制链接]
查看: 31721|回复: 65
发表于 2025-3-21 16:38:28 | 显示全部楼层 |阅读模式
书目名称Real Analysis
副标题Foundations and Func
编辑Miklós Laczkovich,Vera T. Sós
视频video
概述Includes insightful historical remarks regarding real analysis.Presents core ideas of analysis “as a way of thinking” as opposed to “a body of facts”.Explains how and why ideas arise, then how they ev
丛书名称Undergraduate Texts in Mathematics
图书封面Titlebook: Real Analysis; Foundations and Func Miklós Laczkovich,Vera T. Sós Textbook 2015 Springer New York 2015 Fourier series.Stieltjes integral.co
描述.Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated..In the spirit of learning-by-doing, .Real Analysis. includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study..
出版日期Textbook 2015
关键词Fourier series; Stieltjes integral; continuous functions; differentiation; infinite sequences; infinite s
版次1
doihttps://doi.org/10.1007/978-1-4939-2766-1
isbn_softcover978-1-4939-4222-0
isbn_ebook978-1-4939-2766-1Series ISSN 0172-6056 Series E-ISSN 2197-5604
issn_series 0172-6056
copyrightSpringer New York 2015
The information of publication is updating

书目名称Real Analysis影响因子(影响力)




书目名称Real Analysis影响因子(影响力)学科排名




书目名称Real Analysis网络公开度




书目名称Real Analysis网络公开度学科排名




书目名称Real Analysis被引频次




书目名称Real Analysis被引频次学科排名




书目名称Real Analysis年度引用




书目名称Real Analysis年度引用学科排名




书目名称Real Analysis读者反馈




书目名称Real Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:03:20 | 显示全部楼层
发表于 2025-3-22 02:01:34 | 显示全部楼层
发表于 2025-3-22 05:38:00 | 显示全部楼层
发表于 2025-3-22 09:24:05 | 显示全部楼层
Basic Concepts,s Rademacher and Otto Toeplitz, ., literally . [6].) Nowadays, however, such a definition will not do, for modern algebra deals with abstract structures instead of numbers, and some branches of geometry study objects that barely resemble any figure in the plane or in space. Other branches of mathema
发表于 2025-3-22 13:37:37 | 显示全部楼层
Infinite Sequences II,nce (18) in Example ., that is, let .. be the .th digit in the decimal expansion of .. We know that (..) does not have a limit. But does the sequence . have a limit? First of all, let us note that .. ≥ 1, and thus .. ≥ 1 for infinitely many .. Now if there are infinitely many zeros among the terms .
发表于 2025-3-22 20:23:56 | 显示全部楼层
发表于 2025-3-22 23:10:37 | 显示全部楼层
发表于 2025-3-23 04:46:09 | 显示全部楼层
The Definite Integral,called the indefinite integral of .. Now we introduce a very different kind of concept that we also call integrals—definite integrals, to be precise. This concept, in contrast to that of the indefinite integral, assigns numbers to functions (and not a family of functions). In the next chapter, we wi
发表于 2025-3-23 08:49:39 | 显示全部楼层
Applications of Integration,d volume). We have already spent time computing arc lengths, but only for graphs of functions. We saw examples of computing the area of certain shapes (mostly regions under graphs), and at the same time, we got a taste of computing volumes when we determined the volume of a sphere (see item 2 in Exa
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 15:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表