找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Random Perturbations of Dynamical Systems; Mark I. Freidlin,Alexander D. Wentzell Textbook 2012Latest edition Springer-Verlag Berlin Heide

[复制链接]
楼主: incompatible
发表于 2025-3-25 05:46:50 | 显示全部楼层
The Averaging Principle. Fluctuations in Dynamical Systems with Averaging,In Chap. 7, rapidly oscillating stochastic perturbations of dynamical systems are considered. Results of the law-of-large-numbers type, those of central-limit theorem type, and large-deviation results are obtained. Those last results are applied to the asymptotics of the behavior of the perturbed dynamical system on growing time intervals.
发表于 2025-3-25 10:43:45 | 显示全部楼层
Mark I. Freidlin,Alexander D. WentzellThird revised and enlarged edition.New chapters and enlarged bibliographic references.A very detailed and deep mathematical treatment of the long term behavior of randomly perturbed dynamical systems.
发表于 2025-3-25 13:48:48 | 显示全部楼层
Sharpenings and Generalizations,ation results of Chaps. 3–5 to wave propagation in semi-linear partial differential equations (in the spirit of the Kolmogorov–Petrovskii–Piskunov problem for reaction-diffusion equations); and large deviations for infinite-dimensional systems described by stochastic partial differential equations.
发表于 2025-3-25 18:40:20 | 显示全部楼层
发表于 2025-3-25 20:41:27 | 显示全部楼层
发表于 2025-3-26 01:43:32 | 显示全部楼层
发表于 2025-3-26 08:04:21 | 显示全部楼层
The Multidimensional Case,low motion. If the non-perturbed system has no saddle-type points, we can, in the one-degree-of-freedom case, characterize the slow motion by the value of the Hamiltonian (in the multidimensional case with several first integrals, by the values of those first integrals). If there are saddle-type poi
发表于 2025-3-26 11:52:45 | 显示全部楼层
发表于 2025-3-26 13:23:59 | 显示全部楼层
0072-7830 ain innovations in the 3rd edition concern the averaging principle. A new Section on deterministic perturbations of one-degree-of-freedom systems was added in Chapter 8. It is shown there that pure deterministi978-3-642-44687-0978-3-642-25847-3Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-26 17:27:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 15:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表