找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: q-RASAR; A Path to Predictive Kunal Roy,Arkaprava Banerjee Book 2024 The Author(s), under exclusive license to Springer Nature Switzerland

[复制链接]
楼主: 相持不下
发表于 2025-3-23 12:25:52 | 显示全部楼层
发表于 2025-3-23 17:19:28 | 显示全部楼层
Tools, Applications, and Case Studies (q-RA and q-RASAR),of chemical information compared to conventional descriptor-based QSAR modeling approaches. Thus, in most of the examples of modeling biological activity, toxicity, and materials property modeling using the q-RASAR technique presented in this chapter, the q-RASAR models show better quality of predic
发表于 2025-3-23 21:16:37 | 显示全部楼层
发表于 2025-3-24 00:54:43 | 显示全部楼层
Chemical Information and Molecular Similarity,pes, bond types, functionalities, interatomic distances, arrangements of functionality within a molecular skeleton, branching, cyclicity, hydrogen bonding propensity, molecular size, etc. are critical information in determining the interaction of a molecule with other molecules of the same compound
发表于 2025-3-24 03:03:59 | 显示全部楼层
发表于 2025-3-24 07:03:33 | 显示全部楼层
,Quantitative Read-Across (q-RA) and Quantitative Read-Across Structure–Activity Relationships (q-RAhown superior performance over QSAR-derived predictions in several examples. This was further extended to the generation of QSAR-like statistical models, i.e., quantitative read-across structure-activity relationship (q-RASAR) by using various similarity and error-based descriptors computed from ori
发表于 2025-3-24 13:53:25 | 显示全部楼层
发表于 2025-3-24 16:22:35 | 显示全部楼层
Future Prospects,, materials science, and predictive toxicology. The similarity metrics and error considerations may be further refined, possibly with the application of sophistical machine learning approaches, for further development of this new field. More extensive applications of q-RA and q-RASAR in medicinal ch
发表于 2025-3-24 22:49:36 | 显示全部楼层
2191-5407 tools.This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling metho
发表于 2025-3-25 00:00:29 | 显示全部楼层
Book 2024odel development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 23:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表