找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quadratic Differentials; Kurt Strebel Book 1984 Springer-Verlag Berlin Heidelberg 1984 Derivative.Extremale quasikonforme Abbildung.Meromo

[复制链接]
楼主: supplementary
发表于 2025-3-23 13:38:37 | 显示全部楼层
Trajectory Structure in the Large,.., of the horizontal intervals in the .-plane. We are now going to represent the trajectory . through a regular point .. in the large by this mapping. In this manner, we get . in its natural parametrization; moreover, as .. will be defined in a neighborhood of ., it also describes the relation between . and the neighboring trajectories.
发表于 2025-3-23 15:17:15 | 显示全部楼层
Quadratic Differentials of General Type,eant with respect to the local parameters . on .; it is evidently independent of the choice of the local parameter. The infimum of the .-lengths for all loops . in the free homotopy class of . is denoted by ..
发表于 2025-3-23 19:54:55 | 显示全部楼层
978-3-642-05723-6Springer-Verlag Berlin Heidelberg 1984
发表于 2025-3-24 02:01:12 | 显示全部楼层
Quadratic Differentials978-3-662-02414-0Series ISSN 0071-1136 Series E-ISSN 2197-5655
发表于 2025-3-24 02:21:00 | 显示全部楼层
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematihttp://image.papertrans.cn/q/image/780044.jpg
发表于 2025-3-24 06:51:08 | 显示全部楼层
发表于 2025-3-24 12:46:23 | 显示全部楼层
Background Material on Riemann Surfaces,In this paragraph some basic facts about Riemann surfaces are recalled. For the general theory we refer to Ahlfors and Sario [1], Nevanlinna [1], Lehto [1] and Strebel [15].
发表于 2025-3-24 17:39:46 | 显示全部楼层
The Metric Associated with a Quadratic Differential,The invariant line element |.(.)|.|.| was introduced in Section 5.3 and the local properties of the corresponding metric were investigated in Sections 5.4 and 8. In this chapter, we study its global properties.
发表于 2025-3-24 20:58:06 | 显示全部楼层
0071-1136 is in general not single-valued. In the case of a quadratic on the surface, which differential, one first has to take the square root and then integrate. The l978-3-642-05723-6978-3-662-02414-0Series ISSN 0071-1136 Series E-ISSN 2197-5655
发表于 2025-3-25 02:00:38 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-2 18:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表